Qual é o segredo do Gorilla Glass?

Creio que a maioria dos celulares fabricados hoje utilizam como tela o Gorilla Glass, que é fabricado pela tradicional indústria americana Corning.  E o diferencial desse produto é a sua resistência ao impacto e ao risco.

Gorilla-Glass-4

Primeiro devemos entender como funciona o processo de fabricação usual: A resistência do material pode ser melhorada através da indução de tensões residuais compressivas na sua superfície, conseguimos isso através da têmpera. Conforme essa técnica o vidro é aquecido até uma temperatura maior do que a tg (temperatura de transição vítrea) e abaixo do ponto de amolecimento, assim ela é resfriada até a temperatura ambiente com um jato de ar ou até mesmo em óleo. As tensões que queremos aparecem devido à diferença na taxa de resfriamento entre a superfície e o interior do material, já que a superfície resfria rapidamente e se torna rígida. Mas o interior, que possui uma taxa menor, tenta se contrair mais do que a rigidez da superfície permite, assim surgem essas tensões compressivas!

Esses seriam os famosos vidros temperados, contudo o processo do Gorilla Glass é um pouco diferente:

Ao invés de resfriarmos o material com um jato de ar ou óleo, resfriamos numa solução de sais de potássio a 400 °C, fazendo com que os pequenos íons de sódio saiam do vidro e sejam substituídos pelos grandes íons de potássio, causando tensões residuais muito maiores do que nos temperados, por causa do pequeno espaço existente para o maior íon. E são essas tensões que proporcionam ao material uma alta resistência à compressão e à fratura.

No seguinte vídeo podemos ver a comparação do Gorilla com um vidro sódico-cálcico, que é utilizado em garrafas, por exemplo.

Um dos principais concorrentes da Corning é a tela de safira, que possui vantagens como uma dureza maior e uma maior resistência ao risco, porém a sua densidade é maior, o que faz com que o produto final tenha um peso maior, além de que é muito mais caro para se produzir.  A safira é constituída de óxido de alumínio e por não ser encontrada na natureza, o seu processo é artificial. E na sua produção são aplicados calor (temperatura de 2.200 ºC) e pressão, assim em um período de 17 dias ela se resfria lentamente e recebe tratamentos térmicos. Por mais que a tela de safira não obteve muito sucesso no ramo de smartphones, ela é largamente utilizada em janelas de avião, ferramentas de corte e equipamentos elétricos e óticos.

O lançamento da Corning é o Gorilla Glass 4 que em 80% dos testes de queda não apresentou danos na tela.

Leia mais em:

CALLISTER, William D. Ciência e engenharia de materiais: uma introdução. 7. ed. Rio de Janeiro: LTC, c2008.

Corning

Gorilla vs. Safira

Vidros eletrocrômicos

Materiais eletrocrômicos possuem a interessante propriedade de alterar sua cor a partir da incidência de uma diferença de potencial. Assim, ao modificar a tensão aplicada sobre eles, é possível controlar seu grau de transparência e, consequentemente, o grau de transmissão que determinadas radiações do espectro eletromagnético terão através desses materiais.  É nesse contexto que surgem os vidros eletrocrômicos, os quais, somente com o apertar de um botão, proporcionam um controle das intensidades de luz e radiações como ultravioleta e infravermelho transmitidas, garantindo inúmeros benefícios a seus usuários. Janelas feitas dessa classe de vidros, por exemplo, permitem um aumento no conforto visual, uma vez que a transmissão de luz pode ser diminuída nos períodos em que há luminosidade excessiva proveniente do ambiente externo ou intensificada de maneira a maximizar o aproveitamento da luminosidade externa quando ela não for mais incômoda. Outra vantagem é a economia de energia, visto que no verão a passagem elevada de ondas de infravermelho através dos vidros de janela causa um aumento da temperatura do ambiente interno. Se a intensidade dessas ondas for diminuída, diminui também a energia utilizada por ares-condicionados para manter amena a temperatura da sala. Por outro lado, no inverno é possível maximizar o aproveitamento da radiação solar para o aquecimento do ambiente. Outra aplicação bastante interessante desses materiais é em retrovisores veiculares, pois permitem proteger o motorista da incidência de luz alta e consequentemente melhorar segurança nas estradas.

vidro-eletrocromico

Janelas feitas com vidros eletrocrômicos.

Como funcionam os vidros eletrocrômicos? Na verdade, os vidros utilizados possuem composição química semelhante a vidros comuns e não apresentam propriedades eletrocrômicas. O segredo desses dispositivos está em recobrir os vidros por filmes finos e transparentes, normalmente compostos por metais de transição, como óxido de estanho dopado com óxido de índio (SnO2-InO2), trióxido de tungstênio (WO3) ou pentóxido de nióbio (Nb2O5). São esses compostos que, através de mudanças  em seu estado de oxidação, apresentarão alteração de coloração. Os vidros recobertos serão separados por um eletrólito e farão o papel de eletrodos, sendo ligados a uma bateria. Assim, ocorre a formação de uma célula eletroquímica, denominada “vidro eletrocrômico”, o qual apresenta  variação de sua coloração e transmissividade com a aplicação de uma  diferença de potencial.

Mais informações em:

Vidro eletrocrômico é alternativa para segurança e economia de energia;

Electrochromic glass;

Uma visão das tendências e perspectivas em eletrocromismo.

Vidros escorrem?

Os vitrais, tão comuns nas catedrais europeias construídas na idade média, chamaram a atenção da comunidade não somente por sua beleza, mas também por uma interessante peculiaridade: A extremidade inferior dos antigos vidros que os formavam era mais espessa do que no restante do material.

Vitral datado do século XIV – Catedral de Troyes – França

Esse fenômeno pode ser explicado porque o vidro provavelmente escoou ao longo dos anos, aglomerando-se na extremidade inferior, certo? Errado!

A explicação acima é uma famosa crença popular, a qual afirma que os vidros escoam com o passar dos anos, comportando-se como líquidos, mas com uma viscosidade suficientemente elevada para que não possamos notar os sinais de escoamento em um curto período de tempo. Isso explicaria o porquê da característica dos vidros de catedral, já que permanecem na posição vertical durante séculos, tempo suficiente para que o escoamento se manifestasse. A história é tão convincente que, durante anos, foi tida como verdade não só pelo senso comum, mas também por diversos cientistas.  A justificativa é que os vidros possuem estrutura amorfa, diferentemente da grande maioria dos outros sólidos. Nesse aspecto, os vidros assemelham-se a líquidos, já que compartilham da mesma organização estrutural (amorfa). Assim, surgiu a crença de que vidros e líquidos possuiriam propriedades semelhantes. No entanto, existem duas características comuns a todos os líquidos, as quais não são apresentadas por vidros:

– Capacidade de adquirir a forma dos meios que o contém;

– Capilaridade ( propriedade que permite com que líquidos subam em tubos).

As características de vidros e líquidos diferem basicamente devido a forças internas. Os líquidos fluem devido à ausência de forças significativas entre suas moléculas, possibilitando que elas se movimentem facilmente. Contudo, nos vidros os átomos são unidos por ligações químicas muito fortes, tornando-os tão rígidos que não podem fluir na temperatura ambiente. Em outras palavras, vidros são sólidos que conservaram o mesmo arranjo molecular que apresentavam quando encontravam-se líquidos,  mas essa semelhança do ponto de vista de organização dos átomos não pode ser estendida às propriedades desses materiais, uma vez que apresentam interações químicas bastante diferentes em suas estruturas.

Sabendo disso, imagina-se que os vidros não necessariamente devem escoar ao longo do tempo, como os líquidos, mas a crença que explicava o aumento de espessura nos vidros de catedral só pôde de fato ser descartada quando comprovou-se matematicamente sua impossibilidade. Cientistas calcularam o escoamento de vidros na temperatura ambiente e verificaram que este é insignificante a ponto de que para que notarmos qualquer alteração, precisaríamos esperar trilhões de anos (mais do que a idade do universo, a qual é estimada em cerca de 13 bilhões de anos). Dessa forma, é impossível que os vidros das catedrais, que são do milênio passado, houvessem sofrido qualquer alteração que pudesse sequer ser medida, quanto mais observada a olho nu.

Mas então qual a explicação científica para a diferença de espessura ao longo dos vidros das catedrais?

O método de fabricação dos componentes!

A técnica de flotação de vidros, utilizada atualmente para fabricação de vidros planos permite com que esses sejam obtidos com boa qualidade e espessura homogênea. No entanto, os vidros planos na época medieval eram feitos por sopro e então forçadamente esticados através da ação de cilindros (método do cilindro) ou de força centrífuga, através da rotação do vidro em torno de um eixo (método do disco). Os vidros planos obtidos por esses métodos frequentemente apresentavam defeitos de ondulações e espessura heterogênea.

metodo disco

 Esquema de fabricação de vidros planos pelo método do disco.

Por essa razão, os vidros de catedral apresentavam maior espessura em sua base: eles jamais foram perfeitamente planos como inicialmente imaginava-se, mas sim heterogêneos devido ao método de processamento do vidro.

Mais informações disponíveis em:

Corning Museum of Glass

Do cathedral glasses flow?

Projeto Ockham