O aerogel, as suas caraterísticas e a sua diversidade

Aqui no blog já falamos sobre materiais que parecem típicos de filmes de ficção científica (aqui) e um dos mencionados foi o aerogel. Na realidade, esse material não tem nada de futurista, pois existe desde 1930 quando Steven Kistler substituiu a água presente em uma gelatina por um gás.

690486-2

2 gramas podem aguentar 2,5 kg. Imagem: NASA

O aerogel é um material sólido composto por até 99,98% de ar com densidades muito baixas (0,0011 até 0,5 g/cm3). Possui porosidade aberta e nanoestruturas. Os estudos mais aprofundados de aerogéis começaram há cerca de 25 anos e em 1998 esse material foi utilizado numa missão espacial na nave Stardust da NASA para coletar partículas menores que um tamanho de grão e mais velozes do que um tiro de rifle e ainda manter a integridade da amostra.

Os aerogéis geralmente são feitos a partir de géis de sílica através do processo de secagem supercrítica, que consiste na passagem direta da substância de líquido para gasoso, passando pela região subcrítica de um diagrama de fases, como no diagrama abaixo que é correspondente ao dióxido de carbono. No estado supercrítico um fluido não danificará a estrutura em seu redor quando passa pela transformação de fases, pois este não possui forças de capilaridade. Caso essa transformação seja realizada pelo simples processo de evaporação, a estrutura da parcela sólida pode ser comprometida. Assim o processo consiste em fazer o líquido chegar no estado subcrítico e então com a redução na pressão faz com que ele se transforme em gás.

Carbon_dioxide_pressure-temperature_phase_diagram_portuguese.svg

Diagrama de fase dióxido de carbono

Esses materiais além de serem muito resistentes eles possuem uma alta absorção de líquidos, são isolantes térmicos (39x mais isolante que a melhor fibra de vidro do mercado) e podem ser produzido utilizando uma grande variedade de materiais. O vídeo abaixo mostra o quão dessecante o aerogel é.

Na Escola Politécnica de Zurique foi criado um aerogel feito com ouro 20 quilates (liga com aprox. 83% de ouro), que é cerca de 1000 vezes mais leve do que um pedaço de ouro comum com as mesmas dimensões. Esse material foi feito através do aquecimento das proteínas do leite para transformá-las em fibras nanométricas e da adição delas em uma solução de sais de ouro. As fibras entrelaçam-se criando uma estrutura e o ouro cristaliza aderindo às fibras. Após esse processo a secagem foi realizada utilizando dióxido de carbono.

010160151126-aerogel-de-ouro

Aerogel de ouro 20 quilates. Imagem: Gustav Nyström/Raffaele Mezzenga/ETH Zurich

Outro tipo de aerogel é o aerografite, considerado um dos materiais mais leves do mundo (o mais leve é microlattice), com apenas 0,2 miligrama por centímetro cúbico. Ele foi criado nas universidades de Hamburg e Kiel na Alemanha e possui inúmeras propriedades bem interessantes: eletricamente condutor, estável em condições ambientes, dúctil, elástico, absorve quase toda a luz incidida, é resiliente e pode ser comprimido até 95% e retornar ao seu formato inicial. Uma aplicação para esse material seria em baterias de computadores e celulares de íons de lítio.

Já foram utilizados aerogéis como isolante térmico em sacos de dormir militares, como revestimento interno de sapatos especiais para a neve, em raquetes de tênis e squash e também como isolante térmico em trajes espaciais para aeronautas.

Quais outras aplicações você imaginou para o aerogel?

Esse texto foi escrito com base em:

JPL – NASA

Aerogel – Ouro mais leve do mundo

Material mais leve do mundo

Tecmundo – Aerogel

Estado supercrítico

 

Compartilhar Matéria:

Vitrocerâmica brasileira pode substituir as telas dos smartphones

Tenho certeza que pelo menos uns 30% das pessoas que possuem um smartphone já conseguiram a proeza de quebrar a tela. Mesmo o Gorilla Glass (falamos sobre ele aqui) não é páreo para nós. Então a pesquisa com materiais que podem substitui-lo e aumentar o desempenho (ou proteção) dos nossos aparelhos eletrônicos, é muito importante.

Na UFSCar, o doutorando Leonardo Sant’Ana Gallo pesquisou vitrocerâmicas do sistema MgO-Al2O3-SiO2. Assim, através das propriedades descobertas (alta dureza, transparência e baixas densidades) foi possível prever umas das suas possíveis aplicações: telas de aparelhos eletrônicos, como tablets e smartphones, e até mesmo ser utilizada em veículos blindados! Esse material promoveria uma diminuição do peso, seja nos eletrônicos, quanto na aplicação anti-balística.

timthumb.php

Fonte imagem

O processo de produção de uma vitrocerâmica consiste na transformação  de um estado não-cristalino (amorfo) do vidro para um estado parcialmente cristalizado através de um tratamento térmico, esse processo geralmente é conhecido como devitrificação. O detalhe é que junto com a composição química do vidro, é necessário um agente nucleante para induzir o processo de cristalização. No trabalho realizado por Gallo, o material foi submetido à um tratamento térmico nas temperaturas de 700°C e outro à 900°C. Edgar Dutra Zanotto, orientador de Gallo, detalhou numa entrevista à Agência FAPESP como ocorre esse processo: “Quando o material é aquecido, sua estrutura molecular começa a se reorganizar, formando pequenos cristais distribuídos pelo meio amorfo. No caso em estudo, são cristais compostos – de magnésio, alumínio e silício –, como a cordierita, a safirina e outros. Suas características são definidas por três variáveis: composição química do vidro, temperaturas de tratamento e tempo de exposição a essas temperaturas. É possível controlar rigorosamente todas as etapas do processo, determinando, inclusive, o percentual do material a ser cristalizado para a obtenção do produto final de interesse”.

Após o tratamento térmico, devido à cristalização, o material pode se tornar totalmente opaco, mas em alguns casos podem continuar totalmente transparentes, o que não é comum e nem fácil de obter. Então essa é mais uma característica bem importante para a aplicação em telas de smartphones e tablets.

São essas fases cristalinas que promovem uma melhoria nas suas propriedades, como por exemplo na resistência mecânica. Esse material pode até absorver totalmente a energia de um projétil, não deixando ele passar, mas claro que irá ocorrer o rompimento do mesmo.

Outra característica chamativa das vitrocerâmicas é a facilidade com que esse material pode ser produzido, pois podem ser utilizadas as técnicas convencionais de conformação de materiais vítreos. E algumas das suas aplicações comuns são em peças refratárias para se utilizar em fornos e como revestimentos em trabalhos de arquitetura.

Essa pesquisa realizada com esse sistema MgO-Al2O3-SiO2 é tão importante que foi premiada no International Symposium on Crystallization in Glasses and Liquids (11o Simpósio Internacional sobre Cristalização em Vidros e Líquidos), no Japão. Esse simpósio é considerado um dos mais importantes e tradicionais nessa área.

No Japão no Instituto Industrial da Universidade de Tóquio foi realizada uma pesquisa que produziu um vidro com aplicações muito similares à vitrocerâmica brasileira. Um vidro tão resistente e tão forte quanto o aço foi criado e poderá ser utilizado em vidros de carros, edifícios e também em smartphones. O segredo desse material é a quantidade de alumina presente na composição, porém quanto maior a concentração dessa substância, mais o vidro tende a se cristalizar e se transformar em uma vitrocerâmica. Para resolver esse problema, os cientistas utilizaram uma técnica de levitação para evitar qualquer tipo de contato do material fundido com a forma, assim evitando a cristalização. O resultado obtido foi um vidro totalmente transparente que possui 50% de sílica na sua composição.

Já pensou em quantas aplicações esses materiais podem ter?

Referências:

FAPESP

Vidro Inquebrável tão forte quanto o aço

CALLISTER, W.D. Ciência e Engenharia de materiais: Uma introdução. Rio de Janeiro: LTC, 7ª ed. 2008;

*Nota de agradecimento: Ao nosso amigo e leitor, Diego Barboza, que nos enviou a reportagem sobre o vidro japonês.

Compartilhar Matéria:

Como é feita e qual a importância da reciclagem do vidro

Se olharmos quanto tempo um vidro demora para se decompor em comparação com um plástico, vemos que sua vida é estimada pelo dobro de tempo da do polímero, mas então por que é muito mais sustentável utilizar vidros?

paulo_martins_2

Fonte imagem: Anavidro

Pelo simples fato dos vidros serem 100% recicláveis! Os polímeros não são totalmente recicláveis, além disso para recicla-los não podemos misturar dois tipos diferentes e também é muito difícil de identificar rapidamente qual o tipo que foi utilizado. Já garrafas de vidro com cores diferentes por exemplo podem passar pelo processo juntas sem nenhum problema químico, mas com a mistura de cores a cor resultante do vidro não possui grande valor agregado. Vidros com diferentes colocações misturados não causam um grande problema porque sua composição química é muito semelhante, o que muda nas composições é a porcentagem em massa ou ausência de alguns óxidos, os quais chamamos de cromóforos. À medida que temos um aumento da porcentagem de óxido de ferro, o vidro passará do transparente para o marrom, por exemplo. Vale lembrar também que vidros de espelhos, de lâmpadas, de carros ou do tipo pirex não podem ser misturados com os vidros de embalagens, que geralmente são do tipo sódio-cálcico.

A maior parte dos resíduos vítreos produzidos na Europa já são reciclados, mas infelizmente essa ainda não é a realidade do Brasil! Aqui menos de 50% são reciclados e 7 toneladas de vidro são descartados todos os meses em São Paulo, ou seja, quilos e mais quilos de matéria-prima para novos produtos são simplesmente jogados no lixo todos os dias. Ainda, a reciclagem de 1 tonelada evita que 1300 Kg de areia sejam extraídas.  É um desperdício e tanto, né? Sem contar que a extração de areia causa muitos problemas ambientais, como por exemplo a rápida degradação dos rios.

Uma das principais vantagens do reprocessamento do vidro, além da questão ambiental, é que esse processo economiza grande quantidade de energia. Para produzir 1 kg de vidro novo são necessários 4500 kJ, enquanto que para produzir 1 kg de vidro reciclado necessita-se de 500 kJ!

Além disso o processo de reciclagem é muito simples: Quando o material chega na empresa ele passa por um processo de lavagem, para retirar os resíduos. Logo em seguida o vidro passa por um processo de trituração e então é refundido. As temperaturas ideais para a fabricação de um vidro novo ficam por volta de 1500 a 1600°C, já a refusão do material pode ser realizada por volta dos 1000°C, como comentado anteriormente irá reduzir muito os gastos com energia. Com isso, os vidros novamente são transformados em produtos, como embalagens e espumas vítreas, sem nenhuma diferença de desempenho em relação ao vidro produzido pela primeira vez.

Se a logistica de recolhimento de resíduos fosse melhor no nosso país e a população como um todo fosse conscientizada, com certeza a porcentagem de materiais reciclados no Brasil, não só vidro, seria muito maior. Outro fator é que os empresários do ramo de reciclagem preferem reciclar alumínio, que é um material com valor agregado bem maior, então gerará lucros bem maiores!

Referência utilizada

Compartilhar Matéria:

Materiais dielétricos

Isolantes elétricos, ou dielétricos, são materiais que apresentam condutividades elétricas pequenas, da ordem de 10-10 a 10-20 S/m. Devido a essa característica, essa classe de materiais é utilizada no confinamento de energia elétrica, seja para fins de segurança (isolamento elétrico de equipamentos e estruturas) ou de armazenamento energético (aumento da capacitância em capacitores). Os materiais isolantes normalmente são polímeros, cerâmicas, vidros ou madeiras.

Isolantes para fins de segurança / proteção de equipamentos:

Estes materiais têm grande importância para a proteção de pessoas e equipamentos. Um exemplo é o revestimento de fios de eletricidade, o qual permite que as pessoas possam tocar nestes fios sem que sofram choques. Quanto à proteção de equipamentos, um exemplo é a utilização de vernizes e filmes poliméricos isolantes nas bobinas de motores elétricos, fazendo com que haja um bom isolamento entre os fios das bobinas e evitem-se curtos-circuitos, os quais podem ocasionar a queima do motor.

De acordo com as temperaturas máximas de trabalho de determinado equipamento, é necessária a utilização de diferentes tipos de material isolante. Isso ocorre porque os dielétricos são divididos em classes térmicas, de acordo com as temperaturas máximas que podem suportar sem perder sua confiabilidade.

Tabela_classes_termicas

Classes térmicas de materiais isolantesFonte: Apostila de Materiais Elétricos – LaMat

Isolantes para armazenamento energético:

Os isolantes elétricos podem ser utilizados no interior de capacitores, que são componentes capazes de armazenar energia elétrica na forma de campo elétrico. Grande parte dos capacitores é fabricado através do enrolamento de dois filmes poliméricos metalizados, os quais são justapostos e desfasados entre si, formando uma bobina semelhante à mostrada na figura abaixo. Comumente são utilizados polipropileno como dielétrico e liga AgZnAl como revestimento metálico.

armadura_e_dieletrico

Armaduras e dielétrico de um capacitor organizados na forma de bobina

A bobina será então colocada no interior da caneca do capacitor, região deste componente que ficará exposta ao ambiente, e em seguida será isolada do meio externo através do preenchimento da caneca com resina, conforme mostra a figura:

Capacitor

Interior de um capacitor

O aumento da capacitância de capacitores que contêm dielétricos ocorre devido à polarização destes isolantes quando submetidos a um campo elétrico, o que ocorre basicamente por três mecanismos:

Deslocamento espacial da nuvem de elétrons: Os elétrons são partículas carregadas negativamente, de forma que são atraídas para a região de maior potencial de um campo elétrico. Assim, os elétrons rearranjam-se em torno do átomo de modo a ficar mais próximos o possível da região positiva.

Movimentação iônica: Quando materiais iônicos são submetidos a um campo elétrico, seus íons rearranjam-se de maneira que os cátions fiquem mais próximos à região de menor potencial e os ânions à de maior potencial.

Orientação de dipolos: Há materiais que são constituídos por moléculas polarizadas, como a da água. Essas moléculas são denominadas dipolos permanentes e podem ser orientadas de modo similar ao que ocorre na polarização iônica.

Em todos os casos de polarização mencionados, ocorre uma orientação das cargas de modo a produzir um campo elétrico em sentido oposto e menor intensidade ao que deu origem à polarização, culminando em um campo elétrico resultante de menor módulo sobre o capacitor. Sabendo que o campo elétrico é diretamente proporcional à diferença de potencial, verifica-se que ao adicionar um dielétrico a um capacitor que possuía vácuo entre suas armaduras haverá uma diminuição da tensão sobre o componente. Como a capacitância é dada pela equação C= Q/V , onde Q é a carga armazenada, a qual não foi alterada com a adição do dielétrico, verifica-se que uma diminuição na tensão (V) sobre o capacitor culmina em um aumento de sua capacitância. Por consequência, é possível construir capacitores menores mantendo o mesmo valor de capacitância,o que permite a redução dimensional destes componentes.

Perda da capacidade de isolamento:

Os materiais dielétricos podem perder suas propriedades de isolamento de eletricidade. Para entender melhor como isto pode ocorrer, é necessário saber primeiro o porquê destes materiais apresentarem tais características. Os materiais isolantes possuem normalmente ligações iônicas ou covalentes fortes entre seus átomos. Sendo assim, os elétrons são fortemente atraídos pelos cátions, no caso das ligações iônicas, ou pelos átomos que o compartilham, no caso das ligações covalentes. A força das ligações torna necessária grande quantidade de energia para que o elétron possa se movimentar, fazendo com que em condições normais poucos elétrons estejam disponíveis para conduzir a eletricidade. Na medida em que é fornecida energia para os elétrons, que pode ser por meio do aumento da tensão aplicada, por exemplo, estas partículas vão adquirindo energia até que possam ser tornar elétrons livres. Quando o isolante recebe essa grande quantidade de energia, torna-se condutor e os elétrons libertados passam a se mover juntos, podendo queimar, fundir ou vaporizar uma região localizada do material e provocar nele danos irreversíveis.

Uma forma de observar este fenômeno e mensurar as tensões máximas a que um material pode ser submetido sem que perca suas propriedades de isolamento é por meio do teste de tensão disruptiva. Este teste consiste em aplicar tensões crescentes sobre o isolante até que ocorra falha deste material. A tensão responsável pela falha é definida como a tensão disruptiva do material. Dividindo esta tensão pela espessura do material, tem-se a rigidez dielétrica do mesmo, isto é, o máximo valor de campo elétrico suportado pelo material sem que passe a conduzir corrente elétrica. No vídeo mostrado abaixo, podemos ver a quebra de rigidez dielétrica de um vidro, procedimento que culmina em sua ruptura.

Referências:

Apostila de Materiais Elétricos: Capítulo 18 – Materiais Dielétricos. p. 501-556. Laboratório de Materiais (LaMat). Universidade Estadual do Oeste do Paraná;

CALLISTER, W.D. Ciência e Engenharia de materiais: Uma introdução. Rio de Janeiro: LTC, 7ª ed. 2008;

DA SILVA, M. A. Capacitores;

RODRIGUES, C. R. Materiais Elétricos e Eletrônicos: Unidade 4 – Materiais Isolantes e suas Propriedades. p. 1-40;

Epcos. Capacitores para Aplicação AC, 24f.;

ROLIM, J. Materiais Elétricos: Capítulo IV – Materiais Isolantes. p. 71-78.

Compartilhar Matéria:

Vidros calcogenetos

Os vidros apresentam grandes aplicações nas áreas de construção civil, aeroespacial, produção de lentes, decoração,  utensílios domésticos, biomateriais, sensores, telecomunicação, etc. Em outras palavras, estes materiais são aplicados nos mais diferentes campos da atividade humana, de maneira que precisam ser constantemente desenvolvidos de acordo com as necessidades tecnológicas. Os vidros mais comuns pertencem às famílias de silicatos, borossilicatos, boratos e germanatos. No entanto, vidros de diferentes composições vêm se destacando cada vez mais, como por exemplo os vidros calcogenetos, foco da publicação de hoje. Esta classe de vidros apresenta em sua composição um ou mais ânions da família dos calcogênios (6A), como o enxofre, o telúrio ou o selênio, junto a um cátion mais eletropositivo, geralmente arsênio ou germânio. As composições mais comuns são mostradas na Tabela 1.  O oxigênio, apesar de localizar-se também na família 6A, não é considerado um formador de vidro calcogeneto.

Tabela 1: Composições e nomes comerciais de vidros calcogenetos comuns. Adaptado de HEWAK, BRADY & CURRY, 2010.

Tabela

Vidros calcogenetos têm se tornado interessantes industrialmente devido à capacidade que apresentam de se comunicarem tanto com fótons quanto com elétrons, isto é, podem ser aplicados tanto na fotônica quanto na eletrônica.

Quanto às interações com os fótons, os vidros calcogenetos podem sofrer alguns fenômenos que serão explicados resumidamente:

Fotocristalização: O efeito térmico gerado por irradiação óptica pode provocar cristalização de filmes de calcogenetos com baixa temperatura de transição vítrea. Para reverter este fenômeno, é necessário reaquecer o vidro até a fusão e resfriá-lo rapidamente.

Fotodissolução de metais: Se uma camada metálica estiver em contato com o vidro, esta pode ser dissolvida por ele através da aplicação de fótons de energia próxima à da energia de GAP do calcogeneto.

Fotopolimerização: A aplicação de fótons pode levar à combinação entre moléculas em alguns calcogenetos, criando espécies de polímeros no interior do material.  O caso mais estudado é do AsS3, que forma polímeros de As4S4. O efeito também pode ser conseguido com o aumento da temperatura do material.

Fotocompactação: Foi detectada em Ga-La-S iluminado por radiação ultravioleta. Este fenômeno envolve uma densificação do material acompanhada de alteração da composição química e índice de refração na região modificada.

Fotocontração: É semelhante à fotocompactação, no entanto é reversível por recozimento térmico e é observada em um número maior de calcogenetos.

Fotoescurecimento ou fotobranqueamento: Após a irradiação de fótons, pode ocorrer uma alteração estrutural no retículo do vidro que altera sua absorção óptica. Se esta absorção for aumentada, ocorre o fotoescurecimento, mostrado na Figura 1. Caso a absorção óptica seja diminuída, ocorre fotobranqueamento (mais conhecido pelo termo em  inglês photobleaching).

Fotoescurecimento

Figura 1: Fotoescurecimento em Ga-La-S  após a exposição a um laser de comprimento de onda de 532 nm. Fonte:  HEWAK, BRADY & CURRY, 2010.

Anisotropia fotoinduzida: Anisotropia é a variação de determinada propriedade de acordo com a direção em que é analisada no material. No caso dos vidros calcogenetos, pode ocorrer birrefringência após a aplicação de luz polarizada. Em outras palavras, estes materiais apresentarão dois índices de refração distintos, o que ocasionará a visualização de duas cores distintas (dicroísmo).

Quanto às características eletrônicas, os vidros calcogenetos podem ser considerados semicondutores (mais informações sobre semicondutividade podem ser encontradas aqui). Estes vidros apresentam energia de GAP de 1 a 3 eV que diminui à medida que percorre-se a família 6A no sentido de cima para baixo, isto é,  Egap S > Egap Se > Egap Te. Assim, nota-se um aumento do caráter metálico à medida que a tabela  é percorrida neste sentido. A semicondutividade nestes materiais é geralmente do tipo p, ou seja, há uma predominância de lacunas em relação ao número de elétrons.  Pequenas exceções são os vidros Bi-Ge-Se, Pb-Ge-Se e Pb-In-Se, que podem ser semicondutores do tipo n (predominância de elétrons). A Figura 2 mostra o posicionamento dos vidros calcogenetos em relação a outros semicondutores, comparando suas mobilidades eletrônicas. Quanto maior esta for, mais rápida será a resposta do material.

semicondutor

Figura 2: Caracterização de vidros calcogenetos como semicondutores, em relação a demais materiais desta classe. Fonte: MEHTA et al., ANO

Considerando tudo o que foi visto sobre os vidros calcogenetos e sabendo que estes são fáceis de produzir, pouco sensíveis a impurezas e baratos, podemos inferir que estes possuirão um leque muito amplo de aplicações. De fato, estes vidros podem ser utilizados nas áreas civil, militar, médica, aeroespacial e em produtos como interruptores elétricos, sistemas fotorresistentes e holográficos, sensores ópticos, instrumentos para medir ondas eletromagnéticas, lentes, grades ópticas, multiplexadores, filtros ópticos, cabeças de impressão, eletrólitos para baterias de estado sólido, dispositivos para detecção de poluentes, fibras ópticas especiais e muito mais. A aplicação mais promissora, no entanto, é a de lentes ópticas para transmissão de ondas de infravermelho, visto que os vidros calcogenetos são transparentes a este tipo de radiação.

Fontes:

Modernas aplicações de vidros – Oswaldo Alves;

HEWAK, Daniel W.; BRADY, D.; CURRY, R. J. Chalcogenide glasses for photonics device applications. GS Murugan, ed.(Research Signpost, Kerala, India, 2010) Chap, v. 2, 2010.

MEHTA, N. Applications of chalcogenide glasses in electronics and optoelectronics: A review. Journal of Scientific and Industrial Research, v. 65, n. 10, p. 777, 2006.

Compartilhar Matéria:

Superplásticos com nanopartículas de argila

Quando pensamos em argila nos vem à mente vasos de cerâmica, ou aplicações que vemos como simples, que não possuem novas tecnologias envolvidas. Mas na verdade, hoje existem vários trabalhos com esse material nanoparticulado aplicado na área de cosméticos e, como falaremos hoje, na área de nanocargas de polímeros.

Primeiramente, é muito comum adicionarmos diferentes cargas aos polímeros com o intuito de alterar as suas propriedades. Elas podem ser:

Aditivos de modificação

  • Reforço (melhoram propriedades de tração, compressão, estabilidade térmica e dimensional, tenacidade e abrasão), extensores (diminuem o custo de produção), plastificantes (aumentam flexibilidade), espumantes, corantes e agentes de reticulação.

Aditivos de proteção

  • Antioxidantes (retardam o envelhecimento), protetores UV, retardantes de chamas, estabilizantes de chamas e antiozonantes.

A argila pode ser utilizada como carga com o objetivo de retardar a chama e de diminuir o custo de produção, por poder ser produzida em larga escala, possuir menor impacto ambiental do que outros aditivos, gerar menos poeira e ser estável em temperaturas acima de 600 graus celsius.

Por causa de todas essas vantagens, foi criado o nanocompósito polimérico reforçado com argila. No estudo realizado na Universidade Federal do Piauí foi utilizada argila bentonítica, proveniente de uma rocha constituida por um argilomineral montmorilonítico, formado através de desvitrificação seguida pela alteração química de um material vítreo, originária de uma cinza ou um tufo vulcânico. A versatilidade da bentonita permite grandes modificações planejadas da sua microestrutura com o intuito de obter propriedades específicas do material, esse conceito de manipulação é conhecido como “taylor made”.

A argila se encontra em forma de lamelas no material de aproximadamente 1 nm de espessura e centenas de nanômetros de comprimento e de largura. Porém, a mistura entre o polímero e a argila muitas vezes não resulta em um nanocompósito, devido às fracas interações entre o elemento orgânico e o inorgânico. Caso a interação seja mais forte, ela poderá se organizar em forma de lamelas como é o ideal e para obtê-la se utiliza a organofilização da argila.

Mas o que é essa reação de organofilização?

Sem título

Esquema de como ocorre a organofilização. Fonte imagem

Ela consiste nesse caso numa troca catiônica. Os cátions das galerias da argila, geralmente os Na+ por serem facilmente trocados, como é visto acima, são trocados por cátions orgânicos de sais quaternários de amônio. A adição dessas moléculas no material inorgânico gera expansões entre os planos da argila, alterando sua natureza hidrofílica para hidrofóbica ou organofílica. As argilas organofílicas possuem inúmeras outras funções importantes além de serem utilizadas como carga em polímeros, elas são utilizadas até mesmo em condicionadores, germicidas, amaciantes e cosméticos em geral.

O grande problema das argila organofílicas é que elas possuem riscos ambientais e sanitários devido ao uso dos sais, então a vantagem antes citada de adicionar esse material como carga por ser ambientalmente correto não pode ser mais considerada. Porém existem novas pesquisas para substituir as aminas problemáticas por um composto chamado de fosfato de difenila resorcinol.

Quais outras aplicações de engenharia para a argila você conhece?

Você pode ler mais em:

Materiais sobre aditivos de polímeros

Inovação Tecnológica – Argila organofílica

BARBOSA R., MORAIS D. D. S., ARAUJO E. M., MÉLO T. J. A. Caracterizações de argilas bentoníticas e síntese de argilas organofílicas para uso em nanocompósitos poliméricos – Parte II. Revista Cerâmica (58), páginas 495-499, 2012.

SILVA I. A., COSTA J. M. R., FERREIRA H. S., MENEZES R. R., NEVES G. A., FERREIRA H. C. Organofilização de argilas bentoníticas com tensoativos não-iônicos visando seu uso em fluidos de perfuração base óleo. Revista Cerâmica (58), páginas 317-327, 2012.

Compartilhar Matéria:

Vidro de novela

Você já se perguntou como os atores não se machucam naquela cena de filme ou novela em que um vaso é quebrado em suas cabeças? Ou quando quebram um vidro com um soco e não sofrem qualquer ferimento? Os filmes e novelas são cheios de efeitos especiais, disto nós já sabemos, mas neste caso não é um efeito: é utilizado um diferente tipo de vidro, feito de açúcar.  Na publicação de hoje, aprenderemos como fazer este tipo de vidro e veremos a engenharia de materiais por trás deste processo, compreendendo melhor os mecanismos de formação do vidro.

Para a produção de um vidro, é necessária uma substância vitrificante, que será a formadora do retículo amorfo (ou seja, a estrutura do vidro em si) e um modificador de retículo, que rompe algumas ligações covalentes entre as moléculas do vitrificante e abaixa sua temperatura de fusão. Para fazer o vidro falso a partir de açúcar não é diferente: você deve misturar açúcar (vitrificante), água e glicose líquida/xarope de glicose (substâncias modificadoras de retículo) em uma proporção de 3,5:2:1. Ou seja, se você colocar em uma panela 2 xícaras de água, deve adicionar 3,5 xícaras de açúcar e 1 xícara de glicose líquida ou xarope de glicose, dependendo da cor de vidro desejada – a glicose líquida é utilizada para a produção de vidros transparentes, enquanto o xarope de glicose, para vidros fumê. Caso seja desejada uma cor diferente, pode-se também adicionar algumas gotas de corante da cor desejada durante a fabricação do vidro transparente.

Conhecidos os ingredientes e suas funções, podemos agora apresentar como é realizada a produção do vidro e quais os princípios envolvidos:

1 – Aqueça a água em uma panela, mas sem ferver.

O açúcar, que é composto por sacarose (Figura 1), será dissolvido em água com o objetivo de prejudicar sua cristalização e diminuir seu ponto de fusão. Em outras palavras, a água tem a função de modificadora de retículo e auxiliará na produção do vidro. Este líquido exerce atração sobre as moléculas de sacarose do açúcar, fazendo com que parte delas saia dos cristais e interaja com a molécula de H2O, provocando a solubilização do açúcar. No entanto, à temperatura ambiente nem toda a sacarose consegue ser solubilizada, pois antes disto é formada uma solução saturada, ou seja, a água do recipiente solubiliza todo o açúcar que consegue, mas não toda a quantidade que foi adicionada, fazendo com que parte dos cristais permaneçam na forma original, não homogeneizados. Sabendo que a quantidade de açúcar que pode ser solubilizada aumenta proporcionalmente à temperatura da água, esta deve ser aquecida para a produção do vidro. No entanto, ao atingir o ponto de ebulição, o líquido começa a se tornar vapor e passa a não solubilizar mais açúcar e é por esta razão que a fervura deve ser evitada.

molecula_de_sacarose

Figura 1 – Molécula de sacarose, a qual é composta por glicose e frutose.

2 – Misture a porção de açúcar lentamente à agua aquecida e mexa.

Esta é a parte na qual inicia a solubilização completa da sacarose, fazendo com que se dissolvam os cristais de açúcar. Isto é extremamente importante, pois para adquirir a estrutura amorfa do vidro, a estrutura cristalina original do açúcar deve ser eliminada.

3 – Misture a glicose líquida ou o xarope de glicose e continue mexendo até que a maior parte da água evapore.

A água apresenta uma baixa viscosidade à temperatura ambiente (imagine a água descendo pela parede de um copo e depois imagine a mesma coisa para o mel. É bem fácil estimar quem chegará primeiro ao fundo: a água, visto que é menos viscosa) e isto irá interferir na solidificação do vidro, que desejamos que seja sólido à temperatura ambiente, assim, a água precisa ser eliminada, mas caso isto seja feito, as moléculas de sacarose se unirão novamente e formarão cristais de açúcar. É neste momento que entra a glicose! Ela é um dos componentes da sacarose, como vimos na Figura 1, o que as torna bastante semelhantes quimicamente. Dessa forma, as estruturas apresentam uma boa interação intermolecular e isto atrapalhará a organização das moléculas de sacarose umas com as outras, que levaria à formação dos cristais de açúcar. Em outras palavras, a glicose também atua como modificador de retículo, suprimindo o processo de cristalização.

4 – Despeje a mistura no molde e aguarde o resfriamento.

Como os vidros tradicionais, o vidro de açúcar também é moldado a quente, podendo inclusive ser soprado e conformado de maneira a adquirir geometrias complexas. Uma vez que o vidro é vazado no molde desejado, deve-se esperar que ele resfrie para que se torne sólido e possa ser devidamente manuseado.

Pronto, o vidro está pronto para uso! Agora é a hora em que você assusta sua mãe, quebra o vidro com as mãos e se sente como o batman, ou utiliza seu colega como cobaia mesmo e quebra na cabeça dele. Brincadeira, ainda que seja muito menos perigoso do que o vidro tradicional, o vidro de açúcar também pode nos cortar, então muito cuidado!

Vejamos o vidro em ação:

OBS: Não façam isso em casa!

Fontes:

The Sweet Science of Candymaking – Tom Husband;

Science and Property of Sugar Glass – Sean Kelly;

Como fazer vidro falso que quebra para filmes – EHow.

Compartilhar Matéria:

7 materiais futuristas que já existem!

Sabe aqueles materiais que são típicos de ficção científica? Pois é, a engenharia de materiais os torna realidade. Selecionamos 7 materiais que parecem não existir, mas já estão ou logo estarão presentes nas nossas vidas.

Aerogel

Em 1931 já se falava desse grupo de materiais, mas foi apenas há 25 anos que realmente os cientistas começaram a se interessar por eles. O aerogel é uma espuma geralmente feita de géis de alumina e que 99,8% do seu volume consiste em espaços aparentemente vazios, que na verdade são preenchidos por ar.

Umas das características mais interessantes desse material é que ele aguenta uma carga de compressão que pode ser igual até 4 mil vezes o seu próprio peso e além disso é um ótimo isolante térmico. Na foto abaixo, por exemplo, o aerogel separa a flor de uma chama que pode chegar a 1100 graus celsius, incrível não?

MW-DN623_flower_20150608154703_NS

Aerogel utilizado como isolante térmico. Fonte imagem

Assim, a aplicação desse material varia muito e vai desde a sua utilização em missões espaciais até na utilização de limpeza de manchas de óleos em oceanos.

Nanotubos de carbono

Os nanotubos de carbono são basicamente folhas de grafeno (que já falamos dele aqui e aqui!) enroladas que formam uma peça cilíndrica com diâmetro de aproximadamente 1 nm. Assim, dependendo da forma com que estão enrolados e então da forma que os átomos de carbono estão dispostos, o material pode ser condutor ou semicondutor. Vale relembrar que é um material 200 vezes mais resistente que o aço e é até 1000 vezes mais eficaz no transporte de energia ao ser comparado com os fios de cobre. As aplicações mais desejáveis para esses materiais é na produção de nano-processadores e na transmissão eficiente de energia.

Espumas metálicas

metal_foam

Fonte imagem

Essas espumas são formadas quando por exemplo é adicionado ao alumínio fundido um agente formador de poros, que é um pó de TiH2, mas podem ser feitos de outros tipos de materiais também. O volume dos poros nesse material está em torno de 75-95%, ou seja, é um material muito leve e pouco condutor, mas é muito resistente. Esses materiais podem ser utilizados para diminuir o peso e absorver o impacto em carros, também são utilizados em dispositivos médicos e em filtros

Metamateriais

640_invisibility-cloak-2

Fonte imagem

Os metamateriais são aqueles que possuem propriedades não encontradas na natureza, ou seja, apenas podem ser produzidos artificialmente e elas dependem muito da estrutura dele e não tanto da sua composição química. Através de pesquisas já foram desenvolvidos materiais com índice de refração negativo, uma cerâmica que após ser comprimida em 50% volta ao seu estado inicial e até mantos de invisibilidade eletromagnética e acústica. Você também pode ler mais no nosso post só sobre metamateriais.

Alumina Transparente

Já imaginou um material 3 vezes mais resistente que o metal, 85% mais dura que a safira e ainda transparente? Esse é o caso dessa alumina, que é uma cerâmica policristalina conhecida também como oxinitrato de alumínio que até já apareceu em um dos filmes antigos do Star Trek. Ela foi desevolvida primeiramente pelos Estados Unidos com o intuito de ser utilizada como janelas em veículos blindados. Existem rumores que a Microsoft utilizaria na confecção de smartwatch, por ser muito mais resistente que o Gorilla Glass. Os grandes desafios do desenvolvimento desse material é evitar microporos, ter um maior controle sobre os contornos de grãos e minimizar o número de impurezas.

E-textiles

YingGao

Fonte imagem

Não é nenhuma novidade que os wearables estão em alta, mas ainda não estamos acostumados a ver tecidos eletrônicos. Eles simplesmente são tecidos com componentes eletrônicos, que além de serem utilizados para fins estéticos, poderão auxiliar na regulagem de temperatura do corpo, reduzir a resistência ao ar ou até mesmo controlar a vibração muscular. Assim, ajudará muito na performance de atletas e pode ser utilizada também para fins militares. Além disso poderá proteger nosso corpo contra radiação e até mesmo dos efeitos das viagens espaciais.

Liquid metals

São os famosos metais amorfos, que são chamados dessa maneira não por estarem líquidos em temperatura ambiente, mas sim pela forma que as suas moléculas se comportam. Esse material possui também inúmeras propriedades como por exemplo, ele é  2,5x mais resistente do que o titânio; tem dureza 1,5x maior do que um aço inoxidável; é 2-3 vezes mais resistente à deformações plásticas do que um aço comum; não é corrosivo; possui alta condutividade térmica e elétrica. O vídeo abaixo mostra quão mais elástico ele é comparado com metais comuns.

E você, quais materiais adicionaria nessa lista?

Você pode ler mais sobre eles nas fontes utilizadas:

Tecnomundo – Aerogel

Nanotubos de carbono

Metal Foams

Alumina transparente

Forbes – Tecido inteligente

Compartilhar Matéria:

Ecocimentos

Na semana passada começamos a falar sobre a atuação do engenheiro de materiais no mercado de concretos e cimentos, apresentando maneiras de modificar estes produtos para torná-los mais sustentáveis, diminuindo significativamente a emissão de CO2.  (Confira o texto na íntegra). Continuando nesta linha de raciocínio, hoje trouxemos para vocês os ecocimentos, materiais que de modo geral propõem alterações significativas na composição e/ou estrutura do cimento com o objetivo de diminuir consideravelmente os impactos ambientais ou que contêm matérias-primas renováveis ou residuais de outros processos.

O primeiro ecocimento sobre o qual falaremos é feito a partir de bactérias e resíduos. Cientistas descobriram que a bactéria Sporosarcina pasteurii – comumente encontrada em nosso solo – pode produzir, a partir de fermentação por 3 horas de uma mistura de uréia e nutrientes, uma massa bastante interessante para a produção de cimentos. Após adicionar areia, resíduos de cimento industrial reaproveitado e cinzas de casca de arroz a esta massa, o ecocimento está pronto para uso. Infelizmente, a mistura ainda não mostrou o mesmo desempenho do cimento tradicional, mas os cientistas creem que esta estará apta a substitui-lo em cerca de uma década.

Por que este cimento é considerado ecológico?

A resposta é simples, o cimento tradicional é produzido a partir do calcário em uma etapa de transformação que ocorre a 1450°C, enquanto que a fermentação da mistura pelas bactérias ocorre a apenas 30°C, o que provoca a economia de uma enorme quantidade de energia.

Outro tipo de ecocimento é aquele no qual parte do clínquer, material sinterizado que é produzido logo após a queima do calcário a 1450°C, é substituído por cinzas do bagaço de cana-de-açúcar. O bagaço é utilizado como combustível em caldeiras e sua queima tem como resíduo uma cinza composta predominantemente por sílica, cerca de 60% em massa. As vantagens desta substituição parcial são inúmeras; é reduzida a quantidade de cinzas de bagaço de cana-de-açúcar destinada ao aterro sanitário, há a valorização deste resíduo, é reduzido o volume de extração de matérias-primas para fabricação de clínquer e também a emissão de CO2, visto que a produção do clínquer é a etapa com maior emissão deste gás. Calcula-se que a redução das emissões, caso 15% do clínquer fosse substituído por cinzas de bagaço de cana, seria de 3,16 x 10^9 kg de CO2 por ano no Brasil. Do ponto de vista ambiental, este ecocimento é bastante promissor, no entanto não foram publicados dados a respeito de seu desempenho mecânico.

O terceiro exemplo apresentado é talvez o ecocimento mais promissor até o momento. Seu criador, John Harrison, alega que o cimento proposto por sua equipe é capaz de reduzir o ritmo das alterações climáticas sem que seja necessário abrir mão do estilo de vida moderno.

O que tem de novidade neste cimento que o torna tão promissor?

Harrison propõe trocar o carbonato de cálcio, usado nos cimentos tradicionais, como o Portland, por carbonato de magnésio. Essa troca provoca, primeiramente, a diminuição da temperatura do forno industrial de 1450°C para 650°C, temperatura na qual o carbonato de magnésio transforma-se em óxido de magnésio. Assim, seria gasta apenas cerca de metade da energia utilizada para o processo convencional de produção de cimento. Além disso, durante a aplicação e endurecimento do ecocimento, ocorre um fenômeno denominado de carbonação, na qual uma grande quantidade de CO2 é reabsorvido do ar. As consequências disso são que apesar de o ecocimento eliminar uma maior quantidade de CO2 durante sua produção, este absorve muito mais deste gás ao longo de sua vida devido à carbonação. Segundo palavras do próprio Harrison, “As oportunidades de uso de processos de carbonação para sequestrar carbono do ar são simplesmente imensas. Seria preciso alguns séculos, ou até mesmo milênios, para que os cimentos comuns absorvam tanto quanto os ecocimentos são capazes de absorver em apenas alguns meses”.  A substituição direta do cimento Portland pelo ecocimento de Harrison poderia causar a absorção de cerca de 1 bilhão de toneladas de CO2 ao ano, um valor realmente surpreendente. Além disso, o ecocimento apresenta maior durabilidade do que o cimento Portland e é menos alcalino do que este, tornando mais simples a incorporação de resíduos inertes como matéria-prima para a produção de cimento.  Os principais desafios da incorporação do ecocimento à base de carbonato de magnésio no mercado é que o custo de mineração de sua matéria-prima é superior à do cimento Portland e que o setor de construção civil costuma ser bastante conservador.

00866_01

Harrison segurando um bloco de seu ecocimento. Fonte: Fórum da Construção

Quer saber mais sobre os ecocimentos apresentados? Confira os links abaixo:

Ecocimento produzido por bactérias:

Inovação Tecnológica;

Tec Mundo.

Ecocimento de bagaço de cana-de-açúcar:

TEODORO, P.E. et al. Estimativa da taxa de redução de CO2 de concretos produzidos com cinzas resíduas de bagaço de cana-de-açúcar.  Revista de Ciências Exatas e Tecnologia, vol. 8, no. 8, p. 173-179, 2013.

Ecocimento a partir de carbonato de magnésio:

Fórum da Construção.

Compartilhar Matéria:

Produção de concretos sustentáveis

O concreto é o segundo produto mais consumido no mundo, perdendo apenas para a água potável.  Surpreendente, não?  Cerca de 250 kg de cimento Portland, uma das matérias primas usualmente utilizadas para a fabricação de concreto, é produzida anualmente por habitante, o que totaliza uma produção de aproximadamente 1,75 10^12 kg!! Considerando que para cada tonelada de cimento Portland produzida, outra tonelada de dióxido de carbono (CO2) emerge para a atmosfera, observa-se o quão impactante este material é para o meio ambiente. Análises mostram que cerca de 7% das emissões artificiais totais de dióxido de carbono no mundo são provenientes da produção de cimento Portland e cerca de metade destas emissões resultam da etapa de descarbonetação do calcário. Com o crescimento populacional, a indústria de construção civil mantém um elevado ritmo de crescimento, fazendo com que o uso de concretos mais sustentáveis seja uma necessidade cada vez maior.

Pensando nestes aspectos, cientistas norte-americanos desenvolveram um concreto que reduz em menos da metade as emissões de CO2, além de apresentar tenacidade e durabilidade superiores ao concreto tradicional.  A estrutura de concretos é composta por agregados e agente ligante. A fase ligante, silicato de cálcio hidratado (C-S-H), é produzida a partir da hidratação do cimento Portland e apresenta grande influência sobre as propriedades físicas e mecânicas dos materiais cimentícios. Assim, para aprimorar estas propriedades, os cientistas analisaram a estrutura da fase C-S-H em nível molecular e modificaram a proporção de cálcio/sílica, que de acordo com os padrões industriais deve ser de aproximadamente 1,7.

estruturas moleculares

Estruturas moleculares de fases C-S-H com proporções cálcio/sílica de 1,1; 1,5 e 1,8.

Além de avaliados estruturalmente, corpos de prova de cada proporção também foram submetidos a ensaios mecânicos. A análise dos dados adquiridos mostra que uma redução da proporção de cálcio/sílica para 1,5 produz um concreto mais tenaz, cerca de duas vezes mais resistente à fratura. Além disso, são reduzidas intensamente as emissões de CO2, visto que com a redução do teor de cálcio é necessária uma menor quantidade de calcário descarbonetado.

Há ainda outras maneiras de reduzir as emissões de dióxido de carbono. Uma delas, proposta por pesquisadores brasileiros da USP, consiste em aumentar a proporção de carga na fórmula do cimento Portland. A carga é uma matéria-prima à base de pó de calcário que tem função de preenchimento, mas não necessita da etapa de descarbonetação, reduzindo significativamente a emissão de CO2. Modelos matemáticos propunham que grandes quantidades de carga poderiam comprometer a qualidade final do concreto, restringindo-as industrialmente a um teor máximo de 30%. No entanto, os brasileiros provaram que isto não é verdade e conseguiram chegar a teores de carga de até 70% em laboratório sem perda de qualidade. Para isso, as partículas foram organizadas por tamanho, garantindo a maleabilidade do cimento.

Considerando a relevância da sustentabilidade de concretos para minimizar a crise ambiental que vivenciamos, este pode ser um grande nicho de mercado para engenheiros de materiais. Há diversas formas de tentar amenizar os impactos ambientais, e, pensando nisso, apresentaremos a vocês na próxima semana os ecocimentos, não percam!

Referências:

QOMI, M.J.A. et al. Combinatorial molecular optimization of cement Hydrates. Nature Communications. Vol.: 5, Article number: 4960 DOI: 10.1038/ncomms5960, 2014;

Inovação Tecnológica.

Compartilhar Matéria: