Bioplásticos

Na era atual, em que se recorre cada vez mais a matérias-primas de fonte renovável, uma classe de polímeros torna-se bastante promissora: Os bioplásticos. Diversos fatores tornam estes materiais especiais, seja por demandarem bem menos energia na sua produção, serem recicláveis, absorverem gás carbônico ou ainda, em sua maioria, serem biodegradáveis e compostáveis.  A absorção de gás carbônico por meio destes polímeros está relacionada à fotossíntese dos produtos agrícolas usados em suas composições, que podem ser cana-de-açúcar, batata, mandioca, babaçu, milho, etc. Isto permite a absorção de 2 a 2,5 kg de CO2 para cada quilo de polímero produzido, enquanto o plástico convencional produz cerca de 6kg de CO2 por quilo. Agora que já sabemos sobre suas vantagens, vamos conhecer um pouco mais sobre os bioplásticos.

Um dos grandes nomes no ramo de bioplásticos no Brasil é o engenheiro de materiais João Carlos de Godoy Moreira, o qual, junto com pesquisadores da USP – São Carlos, contribuiu bastante para o conhecimento sobre biopolímeros à base de amido.  Vejam que o amido por si só já é um polímero natural, como mostra a Figura:

macromolecula-de-amido

Estrutura do amido.

Assim, se submetido a alterações de pressão e temperatura, o amido tradicional pode ser transformado em amido termoplástico, que é vendido na forma de pellets, como estes que vemos abaixo:

 pellets

Pellets de termoplásticos de amido. De cima para baixo: cana-de-açúcar, milho, batata e mandioca. Fonte: Biomater

Já é possível encontrar no mercado produtos feitos a partir de biopolímeros, tais como bandejas e copos descartáveis de fécula de mandioca, um substituinte para o isopor feito a partir de cogumelo (que mencionamos nesta publicação) ou saquinhos de polietileno verde, feitos de etanol de cana-de-açúcar, que muitos de vocês já devem ter visto no supermercado na hora de embalar frutas e legumes.  O polietileno verde mantém as mesmas propriedades do polietileno tradicional e ambos podem ser reciclados dentro da mesma cadeia de reciclagem. No entanto, o fato de ser proveniente de fonte renovável, não faz do PE verde biodegradável. Apenas 70% dos bioplásticos são de fato biodegradáveis, levando em média 180 dias para efetuar a completa decomposição.

Verifiquem na hora de escolher os produtos que irão consumir: Os bioplásticos são mais benéficos ao planeta do que os plásticos convencionais, mas são ainda melhores quando são compostáveis. Isto porque os polímeros compostáveis não somente são biodegradáveis como também liberam muitos nutrientes benéficos ao solo, gerando um grande círculo virtuoso. Em outras palavras, o plástico é produzido, consumido e coletado, em seguida retorna ao solo, fertiliza-o e dá-se origem a novas plantações de matéria-prima para bioplásticos, que por sua vez transformam-se em mais deste material e o ciclo é reiniciado. Assim, esta categoria de bioplásticos além de apresentar todas as vantagens já mencionadas, ainda auxilia no combate à deposição excessiva de plástico em nossos aterros sanitários.

Para finalizar, observem que infelizmente produtos como o polietileno verde, os copos e bandejas de fécula de mandioca ou mesmo os pellets de termoplásticos de amido ainda não dominam o mercado, apesar de vantajosos em muitos aspectos.

Por que isto acontece?

Ainda há algumas limitações quanto à produção de bioplásticos, por exemplo a necessidade de mais pesquisa para o aprimoramento desta classe de materiais e os preços mais elevados em relação aos polímeros provenientes de matéria-prima fóssil convencional.

Assim, cabe a nós, consumidores conscientes, refletirmos mais sobre os produtos que levamos para nossas casas e verificarmos que nem sempre o menor preço compensa. Consumidores conscientes geram indústrias conscientes!

Fontes:

Termoplásticos de Amido – Planeta Sustentável;

Polietileno Verde – Braskem;

Copos de Mandioca – Planeta Sustentável;

Copos de Mandioca – G1.

Compartilhar Matéria:

Produção de concretos sustentáveis

O concreto é o segundo produto mais consumido no mundo, perdendo apenas para a água potável.  Surpreendente, não?  Cerca de 250 kg de cimento Portland, uma das matérias primas usualmente utilizadas para a fabricação de concreto, é produzida anualmente por habitante, o que totaliza uma produção de aproximadamente 1,75 10^12 kg!! Considerando que para cada tonelada de cimento Portland produzida, outra tonelada de dióxido de carbono (CO2) emerge para a atmosfera, observa-se o quão impactante este material é para o meio ambiente. Análises mostram que cerca de 7% das emissões artificiais totais de dióxido de carbono no mundo são provenientes da produção de cimento Portland e cerca de metade destas emissões resultam da etapa de descarbonetação do calcário. Com o crescimento populacional, a indústria de construção civil mantém um elevado ritmo de crescimento, fazendo com que o uso de concretos mais sustentáveis seja uma necessidade cada vez maior.

Pensando nestes aspectos, cientistas norte-americanos desenvolveram um concreto que reduz a menos da metade as emissões de CO2, além de apresentar tenacidade e durabilidade superiores ao concreto tradicional.  A estrutura de concretos é composta por agregados e agente ligante. A fase ligante, silicato de cálcio hidratado (C-S-H), é produzida a partir da hidratação do cimento Portland e apresenta grande influência sobre as propriedades físicas e mecânicas dos materiais cimentícios. Assim, para aprimorar estas propriedades, os cientistas analisaram a estrutura da fase C-S-H em nível molecular e modificaram a proporção de cálcio/sílica, que de acordo com os padrões industriais deve ser de aproximadamente 1,7.

estruturas moleculares

Estruturas moleculares de fases C-S-H com proporções cálcio/sílica de 1,1; 1,5 e 1,8.

Além de avaliados estruturalmente, corpos de prova de cada proporção também foram submetidos a ensaios mecânicos. A análise dos dados adquiridos mostra que uma redução da proporção de cálcio/sílica para 1,5 produz um concreto mais tenaz, cerca de duas vezes mais resistente à fratura. Além disso, são reduzidas intensamente as emissões de CO2, visto que com a redução do teor de cálcio é necessária uma menor quantidade de calcário descarbonetado.

Há ainda outras maneiras de reduzir as emissões de dióxido de carbono. Uma delas, proposta por pesquisadores brasileiros da USP, consiste em aumentar a proporção de carga na fórmula do cimento Portland. A carga é uma matéria-prima à base de pó de calcário que tem função de preenchimento, mas não necessita da etapa de descarbonetação, reduzindo significativamente a emissão de CO2. Modelos matemáticos propunham que grandes quantidades de carga poderiam comprometer a qualidade final do concreto, restringindo-as industrialmente a um teor máximo de 30%. No entanto, os brasileiros provaram que isto não é verdade e conseguiram chegar a teores de carga de até 70% em laboratório sem perda de qualidade. Para isso, as partículas foram organizadas por tamanho, garantindo a maleabilidade do cimento.

Considerando a relevância da sustentabilidade de concretos para minimizar a crise ambiental que vivenciamos, este pode ser um grande nicho de mercado para engenheiros de materiais. Há diversas formas de tentar amenizar os impactos ambientais, e, pensando nisso, apresentaremos a vocês na próxima semana os ecocimentos, não percam!

Referências:

QOMI, M.J.A. et al. Combinatorial molecular optimization of cement Hydrates. Nature Communications. Vol.: 5, Article number: 4960 DOI: 10.1038/ncomms5960, 2014;

Inovação Tecnológica.

Compartilhar Matéria: