Aços com elevada resistência ao desgaste

Um dos maiores problemas nas indústrias, independente do ramo, costuma ser o desgaste de peças e equipamentos.  Ele ocorre quando essas estruturas estão em movimento, como por exemplo em eixos, válvulas, engrenagens, matrizes e pistões. Como consequência do desgaste de materiais, grandes custos com manutenção ocorrem na indústria, tornando-se muitas vezes mais interessante economicamente investir em materiais especiais que possuam excelente resistência ao desgaste.

Um famoso exemplo de material com essa propriedade é o aço Hadfield. Trata-se de um aço-manganês austenítico que tira proveito da metaestabilidade de sua austenita para que, durante o uso, possa transformar sua microestrutura. Assim, o aço torna-se mais resistente contra a ação do desgaste à medida que ele ocorre, aumentando a durabilidade da estrutura.

Como funciona o mecanismo chave por trás desse grupo de materiais?

Continue reading Aços com elevada resistência ao desgaste

Feixe de íon focalizado: Como funciona essa técnica de análise de materiais

As técnicas de microscopia eletrônica são bastante populares em termos de análise de materiais, principalmente por alcançarem grandes ampliações, o que permite com que possamos enxergar minuciosos detalhes de um material. Durante esse tipo de análise, o material é bombardeado por um feixe de elétrons e os diferentes produtos da interação elétron-material, tais como elétrons retroespalhados, elétrons secundários e raios-X, são analisados. A partir dessas diferentes fontes, podemos então obter importantes informações sobre o material em questão. Elétrons não são, no entanto, as únicas partículas que podem ser aceleradas e focadas por campos elétricos e magnéticos, mas também íons. Com sua massa incrivelmente maior do que a pequeníssima massa de um elétron (o íon mais leve, H+, tem massa 1836 vezes superior a um elétron), os íons são capazes não somente de interagir com o material e gerar importantes fontes de informação sobre sua topografia e composição química, mas também de usiná-lo. É essa técnica, conhecida por Feixe de íon focalizado ou FIB (do inglês focused ion beam), que apresentaremos hoje.

Continue reading Feixe de íon focalizado: Como funciona essa técnica de análise de materiais

Rugosidade de uma superfície

Você sabia que por mais planas e polidas que duas superfícies pareçam ser, elas não estarão 100% em contato se colocadas uma contra a outra? Isso acontece porque na realidade a superfície de um material é composta por diversos picos e vales, que constituem o que é conhecido como rugosidade. Assim, quando encostadas, apenas pequenas áreas das superfícies estão de fato em contato umas com as outras (área de contato real), o que é muito menor do que a área que imaginamos estar em contato observando os materiais a olho nu (área de contato aparente).

superficie

Figura mostrando a área de contato aparente entre duas peças planas (direita) e uma aproximação da região de interface entre as mesmas (esquerda), evidenciando a área de contato real.

Uma superfície é na realidade composta por três componentes: forma, ondulação Continue reading Rugosidade de uma superfície

Liga com efeito de memória de forma pode ajudar em viagens espaciais

A principal característica de materiais com efeito de memória de forma é a possibilidade de retorno a sua forma original quando o objeto for deformado plasticamente. A volta à forma original geralmente é obtida através do aquecimento do material, como pode ser visto nesse post aqui.

Entretanto, para o material ThCr2Si2 o objeto terá sua forma alterada sob efeito de baixas temperaturas. Essa pesquisa é uma colaboração entre a University of Connecticut, Colorado State University e Iowa State University.

Continue reading Liga com efeito de memória de forma pode ajudar em viagens espaciais

Como prever defeitos de soldagem em aços inoxidáveis

A soldagem, por se tratar de um processo que envolve temperaturas bastante elevadas, apresenta um elevado nível de complexidade. O aumento de temperatura do material é heterogêneo ao longo de seu volume, o que faz com que diferentes regiões da peça atinjam temperaturas máximas distintas, bem como diferentes taxas de resfriamento. O resultado é uma microestrutura bastante complexa e heterogênea, a qual deve ser compreendida e controlada na medida do possível para que as propriedades do material não sejam comprometidas.

Um grupo de materiais de soldagem bastante complexa são, por exemplo, os aços inoxidáveis. Esses materiais apresentam uma ampla gama de possíveis elementos de liga e em teores que podem variar significativamente de uma liga para outra. Consequentemente, são suscetíveis a muitos dos possíveis defeitos de soldagem, tais como crescimento excessivo de grão, trincamento durante a solidificação, precipitação de fases indesejadas, trincamento a frio e assim por diante. Com base nisso, foi desenvolvida na década de 50 uma ferramenta que ainda hoje é  Continue reading Como prever defeitos de soldagem em aços inoxidáveis

Material que repele sangue é uma nova aposta na área de biomateriais

Um assunto recorrente aqui no Engenheiro de Materiais são os biomateriais e sabemos que um grande problema na aplicação dos mesmos é a falta de biocompatibilidade com nosso corpo. Dessa forma, existe muito estudo em cima da produção de materiais biocompatíveis. No último ano foi publicado um artigo na Healthcare Materials sobre um material super repelente a sangue, obtendo alta biocompatibilidade.

170118163731_1_540x360

Sangue, plasma e água sobre a superfície do material desenvolvido. Créditos: Kota lab/Colorado State University

Continue reading Material que repele sangue é uma nova aposta na área de biomateriais

Compósito que varia rigidez com a temperatura

No post de hoje falaremos sobre um compósito capaz de mudar sua rigidez de forma extrema com a variação de temperatura. Trata-se de uma pesquisa da École polytechnique fédérale de Lausanne, publicada recentemente, que conseguiu desenvolver o material de uma forma simples e ao mesmo tempo genial.

O compósito tem o formato de um tubo e é bastante rígido à temperatura ambiente. No entanto, ao aplicar sobre o material uma voltagem, ele torna-se flexível em menos de 10 segundos. O segredo por trás dessa versatilidade encontra-se na forma com o que material foi projetado. Continue reading Compósito que varia rigidez com a temperatura

Endurecimento por precipitação em ligas de alumínio

O alumínio possui propriedades bastante interessantes: é pouco denso em relação aos outros metais, é abundante na crosta terrestre, tem excelente condutividade térmica e elétrica e apresenta boa resistência à corrosão em diversas condições. Ainda assim, há diversas aplicações para as quais o alumínio não consegue atender a todos os requisitos necessários, mas se encaixa muito bem em alguns deles. Foi nesse contexto que surgiram as ligas de alumínio,  que permitem que através da adição de elementos de liga seja possível continuar usufruindo em parte das propriedades interessantes deste metal, ao mesmo tempo em que outras de suas características são aprimoradas. A principal modificação feita nas ligas de alumínio é o endurecimento por precipitação, o qual visa a uma melhora da resistência mecânica do material através da adição de elementos de liga específicos e tratamentos térmico. No entanto, como podemos ver na figura abaixo, nem todos os elementos de liga são adicionados com o objetivo de promover precipitação por envelhecimento.

ABAAAAUZkAF-1 Continue reading Endurecimento por precipitação em ligas de alumínio

Você sabe o que são materiais auxéticos?

Os materiais auxéticos são aqueles que possuem uma compressibilidade negativa, ou seja, eles possuem um coeficiente de poisson negativo. Isso significa que eles têm o seu volume aumentado quando for aplicada uma força de compressão.

Anteriormente, assumia-se que o coeficiente de poisson, que é a medida de deformação transversal de um material, não poderia ser alterada e que a maioria apresentava um coeficiente positivo entre +0,22 e +0,33. Porém nos últimos anos foi descoberto que sim, um material pode ter um coeficiente negativo e isso é possível quando se altera a estrutura do material e os mecanismos de deformação dele.

Esses materiais podem ser poliméricos, metálicos, compósitos ou cerâmicos e também podem possuir diferentes estruturas entre eles. Exemplos de materiais que demonstram esse comportamento são cristobalita alfa e quartzo alfa, em certas direções e também em certas temperaturas. Um exemplo também de um polímero natural que pode ser auxético é a celulose cristalina, em uma forma definida.

Na Academia Polonesa de Ciências foi descoberto um material chamado amidoborano de sódio [Na(NH2BH3)]. A compressibilidade negativa desse material é maior do que qualquer outro material já estudado (10%) e além disso o comportamento desse materials ocorre de forma brusca. Ademais uma das características que mais chamam atenção do material é que a compressibilidade é de natureza química e não física, ou seja, ocorre o alongamento das ligações químicas entre o nitrogênio e o boro e também entre o nitrogênio e o hidrogênio.

As possíveis aplicações para os materiais auxéticos são colete à prova de balas e implantes ou sondas para abrir vasos sanguíneos. Você conseguiu pensar em mais alguma?

 

Referências:

Colete à prova de balas ativo funcionará como airbag

Materiais auxéticos tornam-se mais grossos quando são esticados

An Introduction to Auxetic Materials: an Interview with Professor Andrew Alderson