Nanomaterial viabiliza extração de hidrogênio do mar

O gás hidrogênio tem capacidade de liberar grande quantidade de energia e sua queima é limpa, já que gera água como subproduto. Seu emprego como fonte energética hoje em dia é limitada devido aos cuidados necessários ao seu armazenamento, já que é um gás explosivo, e também devido aos custos elevados relativos a sua obtenção. O hidrogênio é convencionalmente produzido por meio de eletrólise, processo em que ocorre a quebra de uma molécula por ação de energia elétrica. Essa molécula é normalmente a água (H2O), cuja quebra forma oxigênio e hidrogênio segundo a reação abaixo:

Continue reading Nanomaterial viabiliza extração de hidrogênio do mar

Compartilhar Matéria:

Superplásticos com nanopartículas de argila

Quando pensamos em argila nos vem à mente vasos de cerâmica, ou aplicações que vemos como simples, que não possuem novas tecnologias envolvidas. Mas na verdade, hoje existem vários trabalhos com esse material nanoparticulado aplicado na área de cosméticos e, como falaremos hoje, na área de nanocargas de polímeros.

Primeiramente, é muito comum adicionarmos diferentes cargas aos polímeros com o intuito de alterar as suas propriedades. Elas podem ser:

Aditivos de modificação

  • Reforço (melhoram propriedades de tração, compressão, estabilidade térmica e dimensional, tenacidade e abrasão), extensores (diminuem o custo de produção), plastificantes (aumentam flexibilidade), espumantes, corantes e agentes de reticulação.

Aditivos de proteção

  • Antioxidantes (retardam o envelhecimento), protetores UV, retardantes de chamas, estabilizantes de chamas e antiozonantes.

A argila pode ser utilizada como carga com o objetivo de retardar a chama e de diminuir o custo de produção, por poder ser produzida em larga escala, possuir menor impacto ambiental do que outros aditivos, gerar menos poeira e ser estável em temperaturas acima de 600 graus celsius.

Por causa de todas essas vantagens, foi criado o nanocompósito polimérico reforçado com argila. No estudo realizado na Universidade Federal do Piauí foi utilizada argila bentonítica, proveniente de uma rocha constituida por um argilomineral montmorilonítico, formado através de desvitrificação seguida pela alteração química de um material vítreo, originária de uma cinza ou um tufo vulcânico. A versatilidade da bentonita permite grandes modificações planejadas da sua microestrutura com o intuito de obter propriedades específicas do material, esse conceito de manipulação é conhecido como “taylor made”.

A argila se encontra em forma de lamelas no material de aproximadamente 1 nm de espessura e centenas de nanômetros de comprimento e de largura. Porém, a mistura entre o polímero e a argila muitas vezes não resulta em um nanocompósito, devido às fracas interações entre o elemento orgânico e o inorgânico. Caso a interação seja mais forte, ela poderá se organizar em forma de lamelas como é o ideal e para obtê-la se utiliza a organofilização da argila.

Mas o que é essa reação de organofilização?

Sem título

Esquema de como ocorre a organofilização. Fonte imagem

Ela consiste nesse caso numa troca catiônica. Os cátions das galerias da argila, geralmente os Na+ por serem facilmente trocados, como é visto acima, são trocados por cátions orgânicos de sais quaternários de amônio. A adição dessas moléculas no material inorgânico gera expansões entre os planos da argila, alterando sua natureza hidrofílica para hidrofóbica ou organofílica. As argilas organofílicas possuem inúmeras outras funções importantes além de serem utilizadas como carga em polímeros, elas são utilizadas até mesmo em condicionadores, germicidas, amaciantes e cosméticos em geral.

O grande problema das argila organofílicas é que elas possuem riscos ambientais e sanitários devido ao uso dos sais, então a vantagem antes citada de adicionar esse material como carga por ser ambientalmente correto não pode ser mais considerada. Porém existem novas pesquisas para substituir as aminas problemáticas por um composto chamado de fosfato de difenila resorcinol.

Quais outras aplicações de engenharia para a argila você conhece?

Você pode ler mais em:

Materiais sobre aditivos de polímeros

Inovação Tecnológica – Argila organofílica

BARBOSA R., MORAIS D. D. S., ARAUJO E. M., MÉLO T. J. A. Caracterizações de argilas bentoníticas e síntese de argilas organofílicas para uso em nanocompósitos poliméricos – Parte II. Revista Cerâmica (58), páginas 495-499, 2012.

SILVA I. A., COSTA J. M. R., FERREIRA H. S., MENEZES R. R., NEVES G. A., FERREIRA H. C. Organofilização de argilas bentoníticas com tensoativos não-iônicos visando seu uso em fluidos de perfuração base óleo. Revista Cerâmica (58), páginas 317-327, 2012.

Compartilhar Matéria:

Nova família de materiais luminescentes

Os materiais luminescentes são bem utilizados no nosso cotidiano, por exemplo em sinalizações de saída de emergência ou na sinalização de trânsito. Esse fenômeno pode ocorrer em qualquer estado da matéria e é relacionado com a capacidade do material de emitir luz através de uma reação química, radiação ionizante ou até mesmo por meio de uma emissão de luz. A transferência ou absorção de energia se dá através de um íon de espécie ativadora, que quando excitado sofre decaimento e então emite radiação de menor energia que a fonte incidente. O que também pode ocorrer é que o íon ativador não é capaz de absorver a energia de excitação direta, então para absorver essa energia será utilizado um íon sensibilizador.

Cientistas do MIT desenvolveram uma família de materiais bioinspirados luminescentes que emitem precisamente cores controladas (até mesmo o branco) e cuja emissão pode ser ajustada conforme a variação das condições do ambiente. Esses materiais consistem em um metallogel, que é um polímero metálico feito de metais de terras raras, pois eles apresentam grande rendimento quântico, e que no caso é feito com lantanídeo. O princípio de emissão de luz pode ser ajustado conforme estimulos químicos, mecânicos ou até mesmo térmicos, assim eles podem identificar a presença de alguma substância ou situação particular. Isso é possível através da combinação do lantanídeo com o polímero polietilenoglicol. Dessa forma eles podem detectar toxinas, poluentes e elementos patogênicos através das diferentes emissões de luz quando em contato com essas substâncias.

Outra aplicação desses incríveis materiais é na detectação de tensão em sistemas mecânicos. Esse material pode ser aplicado em forma de gel ou como um revestimento nas estruturas, então antes que a falha ocorra, ele irá identificá-la. Além disso, esses materiais compósitos são capazes de auto-montagem e auto-regeneração e podem ser utilizados em casos que necessite de absorção de energia sem fraturar, como em implantes biológicos.

newfamilyofl

Materiais luminescentes produzidos pelo MIT. Fonte imagem

E por que eles são bioinspirados?

Bom, o engenheiro de materiais Niels Holten-Andersen disse que ele procura usar os truques presentes na natureza para projetar polímeros que sejam bioinspirados e esses materiais luminescentes não deixam de ser um caso, porque ele se baseou nos organismos presentes no oceano.

Um grande centro no Brasil que trabalha com materiais luminescentes é o Instituto de Pesquisas Energéticas e Nucleares (Ipen) que é ligado à USP. Nele o químico Everton Bonturim desenvolve materiais com luminescência persistente, que é o fenômeno no qual continuam emitindo luz por minutos ou até mesmo horas depois de cessada a excitação e quando o sistema absorve energia térmica a energia dele será liberada. E o principal diferencial dessa pesquisa feita por Bonturim é que ele estuda as propriedades que esses materiais terão em escala nanométricas para serem agregados em materiais como polímeros e sílica. Como já falado anteriormente, são utilizados metais de terras raras nesse sistema e os três tipos presentes na pesquisa do IPEN são o térbio (Tb), európio (Eu), e túlio (Tm).

portal20140403_a

Material luminescente. Fonte imagem

A aplicação mais provável para eles é transforma-los em marcadores biológicos, que permitem a identificação de substratos e são úteis no diagnóstico de doenças. Além disso são utilizados na área de segurança ao serem utilizados em células e documentos.

Você conhece mais algum centro de pesquisa que trabalha com materiais luminescentes ou alguma outra aplicação? Não deixe de compartilhar com a gente!

Leia mais sobre:

Phys.org

USP

Luminescência

Compartilhar Matéria: