Nova família de materiais luminescentes

Os materiais luminescentes são bem utilizados no nosso cotidiano, por exemplo em sinalizações de saída de emergência ou na sinalização de trânsito. Esse fenômeno pode ocorrer em qualquer estado da matéria e é relacionado com a capacidade do material de emitir luz através de uma reação química, radiação ionizante ou até mesmo por meio de uma emissão de luz. A transferência ou absorção de energia se dá através de um íon de espécie ativadora, que quando excitado sofre decaimento e então emite radiação de menor energia que a fonte incidente. O que também pode ocorrer é que o íon ativador não é capaz de absorver a energia de excitação direta, então para absorver essa energia será utilizado um íon sensibilizador.

Cientistas do MIT desenvolveram uma família de materiais bioinspirados luminescentes que emitem precisamente cores controladas (até mesmo o branco) e cuja emissão pode ser ajustada conforme a variação das condições do ambiente. Esses materiais consistem em um metallogel, que é um polímero metálico feito de metais de terras raras, pois eles apresentam grande rendimento quântico, e que no caso é feito com lantanídeo. O princípio de emissão de luz pode ser ajustado conforme estimulos químicos, mecânicos ou até mesmo térmicos, assim eles podem identificar a presença de alguma substância ou situação particular. Isso é possível através da combinação do lantanídeo com o polímero polietilenoglicol. Dessa forma eles podem detectar toxinas, poluentes e elementos patogênicos através das diferentes emissões de luz quando em contato com essas substâncias.

Outra aplicação desses incríveis materiais é na detectação de tensão em sistemas mecânicos. Esse material pode ser aplicado em forma de gel ou como um revestimento nas estruturas, então antes que a falha ocorra, ele irá identificá-la. Além disso, esses materiais compósitos são capazes de auto-montagem e auto-regeneração e podem ser utilizados em casos que necessite de absorção de energia sem fraturar, como em implantes biológicos.

newfamilyofl

Materiais luminescentes produzidos pelo MIT. Fonte imagem

E por que eles são bioinspirados?

Bom, o engenheiro de materiais Niels Holten-Andersen disse que ele procura usar os truques presentes na natureza para projetar polímeros que sejam bioinspirados e esses materiais luminescentes não deixam de ser um caso, porque ele se baseou nos organismos presentes no oceano.

Um grande centro no Brasil que trabalha com materiais luminescentes é o Instituto de Pesquisas Energéticas e Nucleares (Ipen) que é ligado à USP. Nele o químico Everton Bonturim desenvolve materiais com luminescência persistente, que é o fenômeno no qual continuam emitindo luz por minutos ou até mesmo horas depois de cessada a excitação e quando o sistema absorve energia térmica a energia dele será liberada. E o principal diferencial dessa pesquisa feita por Bonturim é que ele estuda as propriedades que esses materiais terão em escala nanométricas para serem agregados em materiais como polímeros e sílica. Como já falado anteriormente, são utilizados metais de terras raras nesse sistema e os três tipos presentes na pesquisa do IPEN são o térbio (Tb), európio (Eu), e túlio (Tm).

portal20140403_a

Material luminescente. Fonte imagem

A aplicação mais provável para eles é transforma-los em marcadores biológicos, que permitem a identificação de substratos e são úteis no diagnóstico de doenças. Além disso são utilizados na área de segurança ao serem utilizados em células e documentos.

Você conhece mais algum centro de pesquisa que trabalha com materiais luminescentes ou alguma outra aplicação? Não deixe de compartilhar com a gente!

Leia mais sobre:

Phys.org

USP

Luminescência

Materiais autorreparáveis

Materiais falham a todo momento, seja por envelhecimento, desgaste, fadiga, ação de defeitos concentradores de tensões, ou outros fatores.  Assim, é necessária ação humana para repará-los, substitui-los ou agir preventivamente para evitar que o componente falhe. Imaginem como nossas vidas, tanto pessoal como profissional, seriam simplificadas se os materiais fossem autorreparáveis e não precisássemos fazer monitoramento, substituições ou reparos preventivos para evitar falhas, tampouco reparar ou substituir o material em caso de danos. Construções seriam mais seguras, carros batidos não precisariam ser arrumados em oficinas, aviões não precisariam passar por um monitoramento tão rigoroso de trincas.  Pensando em tudo isso, pesquisadores do mundo todo começaram estudos sobre materiais autorreparáveis a partir dos anos 2000. Até então, esta interessante característica foi conseguida principalmente por 4 diferentes mecanismos:  adição de agentes reparadores; criação de rede vascular interna, similar a nosso sistema circulatório; memória de forma e fornecimento de energia a termoplásticos.

O primeiro mecanismo – adição de agentes reparadores –  é utilizado principalmente em polímeros termofixos e compósitos de matriz polimérica. O método consiste em dispersar ao longo da matriz polimérica catalisador na forma de pó e pequenas cápsulas contendo um monômero líquido. Quando há a formação de trincas, não somente o material polimérico é danificado, mas também algumas das cápsulas, o que fará com que o monômero seja liberado e mova-se por capilaridade até ocupar toda a região da trinca. Assim, quando este encontra o catalisador sólido, inicia-se uma reação de polimerização que preencherá completamente a região danificada. Os materiais que contém agentes reparadores dispersos em cápsulas apresentam ótimos níveis de eficiência em autorreparação, sejam eles submetidos a um carregamento estático ou dinâmico.  O maior problema deste método é que as cápsulas devem ser muito pequenas para que não fragilizem o polímero, pois atuam como pequenos defeitos na microestrutura. Isto limita o tamanho das trincas que podem ser preenchidas, pois uma quantidade menor de monômero consegue ser encapsulada. Além disso, o material só pode ser reparado uma única vez em determinada região, pois quando a segunda trinca iniciar, não haverá mais cápsulas a serem rompidas para preenchê-la.

Encapsulamento

Autorreparo por adição de agentes reparadores. Fonte (em inglês): MURPHY e WUDL, 2010.

Uma segunda maneira de produzir materiais autorreparáveis é bastante inspirada na forma com que nosso próprio organismo se cura: levando o agente reparador até a região que precisa ser reparada por meio de um sistema vascular. Esta técnica também é comumente utilizada para termofixos e compósitos de matriz polimérica, e o preenchimento das trincas, assim como no método anterior, é realizado por polimerização. Assim, são necessários dois sistemas vasculares, um contendo uma resina líquida e o outro, um endurecedor líquido. Estas substâncias, ao entrarem em contato, desencadearão uma reação de polimerização que reparará a região danificada. Este método é bastante limitado se funcionar apenas por capilaridade, pois só serão reparadas efetivamente regiões que se encontrem a distâncias menores do que a dimensão do diâmetro do tubo. Assim, surgiu outra ideia baseada em nosso organismo: pressurizar o sistema vascular através do bombeamento das substâncias, melhorando a eficiência deste método de reparo. Em comparação com o método de encapsulamento de agentes reparadores, a formação de canais vasculares consegue fechar trincas 10x maiores. No entanto, o reparo é mais devagar, pois os agentes reparadores precisam percorrer maiores distâncias até que cheguem à região danificada. Assim, se a trinca propagar-se mais rápido do que estiver sendo reparada, o método não conseguirá pará-la.

Outro método para um material autorreparar-se é estimulando-o a retornar a sua forma inicial, se este possuir memória de forma. A memória de forma é uma propriedade apresentada por determinadas ligas metálicas, como ouro-cádmio, nitinol ou cobre-zinco, que permite com que sejam deformadas plasticamente e quando aquecidas voltem instantaneamente a sua forma original. (O mecanismo de memória de forma foi explicado anteriormente neste post).  Até agora consideramos como falha de materiais a formação e propagação de trincas. No entanto, se uma região de um componente sofrer uma deformação plástica indesejada, isto também é caracterizado como falha. Neste caso, podemos repará-la através do envio de calor àquela região, realizado através de um sistema bastante similar ao de vascularização que vimos no parágrafo anterior. Trata-se de uma rede de fibras ópticas, na qual ao invés de fluir resina ou endurecedor, há o transporte de luz de um laser até o ponto de falha, no qual há o rompimento local das fibras ópticas. Assim, a região recebe calor proveniente do laser e elimina a deformação plástica adquirida, revertendo o dano. Além de tudo isto, a fibra óptica ainda atua como agente de reforço, produzindo um compósito. Quem teve esta ideia brilhante? Um engenheiro de materiais, é claro. Seu nome é Henry Sodano.

Para polímeros termoplásticos, não é necessário a elaboração de estruturas tão complexas, apenas um pouco de calor. Esta classe de material pode ser moldada com a temperatura, então se pudermos fundir estes polímeros sob tensão, as cadeias podem se rearranjar e após o resfriamento, retomar a estrutura inicial do polímero.  Partindo deste princípio, alguns polímeros foram testados através do impacto de projéteis. Sim, literalmente atirou-se nos polímeros! A energia proveniente do choque foi tão grande, que permitiu uma grande elevação na temperatura e, em seguida, o fechamento do buraco deixado pelo projétil. A experiência é mostrada na figura abaixo.

experimento_projeteis

Autorreparo de termoplástico impactado por um projétil

Estes materiais são incríveis e podem revolucionar nossas vidas nos próximos anos. Nós, como engenheiros de materiais, devemos difundi-los e aprimorá-los ainda mais!

Referências:

Explain That Stuff;

B.J. Blaiszik; N.R. Sottos; S.R. White; Nanocapsules for self-healing materials. Composites Science and Technology vol. 68, p. 978–986, 2008.

R. Hamilton; N. R. Sottos; S. R. White; Pressurized vascular systems for self-healing materials. R. Soc. Interface Vol. 12, 2011. Disponível em: < ttp://rsif.royalsocietypublishing.org/content/royinterface/early/2011/09/21/rsif.2011.0508.full.pdf>

E. B. Murphy; F. Wudl; The world of smart healable materials.  Progress in Polymer Science vol. 35, p. 223–251, 2010.

A vantagem dos polímeros

Nessa semana assisti uma palestra apresentada por um engenheiro da empresa Solvay sobre uma das maiores tendências do momento: A substituição dos metais pelos polímeros.

Esse fenômeno ocorre porque hoje há o desenvolvimento de polímeros com propriedades equivalentes ou até maiores do que metais. Assim, essa gama de materiais pode ser classificada conforme a pirâmide abaixo:

pyramid-of-plastic-performance

Pirâmide polimérica

Na maioria das vezes os materiais substituintes estão no topo da pirâmide, como o PEEK e o PBI e possuem propriedades superiores aos demais, já os que estão na base da mesma, como PET, PP e PE são geralmente utilizados na fabricação de embalagens ou brinquedos, ou seja, não possuem aplicações que necessitam alto desempenho do material.

As principais vantagens obtidas através dessa permuta de materiais em certas aplicações são a redução do peso, redução do custo, melhoria nas propriedades de resistência química e há uma redução no barulho produzido pelos componentes. Além disso não é necessário fazer operações secundárias na manufatura e é possível fabricar peças com geometria complexa.

Um exemplo muito interessante é o projeto Solar Impulse, que é apoiado pela Solvay e consiste em um avião solar de longo alcance que visa a volta ao mundo utilizando apenas a energia solar. Para isso ser possível em várias partes do avião foram utilizadas peças feitas com polímeros ao invés de metais, que irão fornecer ao avião um menor peso e consequentemente um menor consumo de energia. Dois materiais utilizados foram PPA e PVDF, que possuem alta resistência aos raios UV. O vídeo abaixo fala um pouco mais sobre o Solar Impulse:

Outro caso bem interessante, que não foi comentado na palestra e não é da Solvey, é a substituição dos componentes metálicos dos braços biônicos. Próteses chegam a custar mais de 40 mil dólares e através da troca do material e do design foi possível ter um custo de fabricação de apenas 300 dólares! Ou seja, chegará no consumidor final por um custo muito menor, assim o número de pessoas que poderão ter acesso será muito maior, o que é simplesmente incrível. O vídeo abaixo mostra ela em funcionamento:

Ainda, polímeros reforçados com fibras podem possuir resistência mecânica muito maior que os metais e polímeros, como o AMODEL (PPA), IXEF (PARA) e Ketospire (PEEK) que possuem resistência à tração e peso específico próximos aos de metais, mas o seu módulo de elasticidade ainda é muito menor.

Ademais, eles ainda possuem inúmeros desvantagens em relação aos metais, como por exemplo menor vida útil e maior agressão ao meio ambiente. Sabe-se que ainda há muito para melhorar na reciclagem dos polímeros, pois hoje ao serem reciclados, o produto final obtido não tem as mesmas propriedades do que o reciclado. Além disso, para a reciclagem diferentes tipos de polímeros não podem ser misturados, porque causará contaminação e sem contar que não são materiais biodegradáveis, causando vários problemas ambientais.

Em relação aos problemas técnicos ainda é muito difícil ter uma peça polimérica com tolerância dimensional baixa e com um design complexo, para essas aplicações os metais são a melhor opção!

Para otimizar o processo, essas equipes de desenvolvimento usam softwares de simulação de engenharia preditiva (CAE/CAD), que muitas vezes substituem a necessidade de testes reais. Foi comentado também sobre as impressoras 3D, mas essas ainda não são utilizadas para polímeros de alta performance e sim para aqueles que se encontram na base da pirâmide.

E você de qual time é, metais ou polímeros?

Até a próxima semana (:

Nanomateriais transportadores de medicamentos

Um dos ramos mais promissores dentro da engenharia de materiais com certeza é o dos biomateriais e um grande exemplo são os nanomateriais distribuidores de medicamentos. Esses materiais servem como sistemas que permitem a liberação do remédio em um local específico e controlado, com isso é possível que aumente a eficácia do tratamento, diminuindo os efeitos colaterais e também diminuindo a quantidade de fármaco utilizado. Os principais requisitos que devem possuir esses polímeros são: eles não podem ser tóxicos, não imunogênicos e devem ser rapidamente eliminados do corpo para evitar acúmulo tóxico e efeitos colaterais.

Os medicamentos no nosso corpo enfrentam uma série de barreiras até chegar ao seu destino final, por exemplo a filtração que ocorre nos rins. No tecido ou na célula o remédio deve ultrapassar a membrana plasmática e dentro da célula deve escapar de um ácido severo, sendo assim proteínas e oligonucleotídeos são degenerados ou inativados.

Para solucionar o problema da filtração pelos rins e da remoção através do sistema do retículo endotelial as proteínas são aumentadas para cerca de 10 nm através do enxerto do polímero hidrofílico poli(etileno-glicol), isso é feito porque as moléculas maiores são filtradas mais lentamente pelos rins.

Um dos estudos comentados na reportagem da Science Mag desenvolveu um fármaco utilizando polímeros que aumentam a meia-vida da exenatida, que é um remédio peptídico utilizado no tratamento de diabetes do tipo 2 geralmente aplicado 6x ao dia, de 2 horas para aproximadamente 100 horas! Outras grandes aplicações são o combate de tumores e em vacinas, por exemplo.

Os polímeros nesse caso possuem uma grande vantagem em relação aos outros tipos de materiais, pois possuem uma grande versatilidade em estrutura e nas propriedades físico-químicas devido a grande variedade de monômeros existentes para formar as cadeias poliméricas. Os mais utilizados são os polymersomes, dendrimeros e polímeros de ciclodextrina.

Além disso alguns polímeros possuem grupos químicos que possuem a habilidade para se adaptar de acordo com o ambiente, que são chamados de “polímeros inteligentes”. Algumas dessas adaptações podem estar relacionadas com o pH, resistência mecânica, temperatura e condutividade.

Uma pesquisa da Universidade de São Paulo (USP) com o Instituto de Pesquisas Tecnológicas em 2010 gerou uma patente de um nanocarregador que transporta drogas hidrofílicas (solúveis em água) que era inédito na época. O produto criado pelos pesquisadores Antonio Cláudio Tedesco e Natália Neto Pereira Cerize pode ser empregado em diferentes partes do corpo e é uma substância biocompatível. Ele também foi aplicado em testes laboratoriais no tratamento de câncer de pele.

Como tudo criado no laboratório, grande parte desses nanomateriais ainda estão em períodos de testes e ajustes para obter-se propriedades importantes como estabilidade, distribuição de tamanho, eliminação do corpo no tempo previsto, não formação de substâncias indesejáveis e precisão no alvo que se deseja atingir.

FAPESC – Nanotecnologia para transporte eficaz de medicamentos

Hubell J.A.; Chilkoti A. “Nanomaterials for Drug Delivery”. ScienceMag (2012), VOL 337, pg. 303.

Webster D.M.; Sundaram P.; Byrne M.E. Injectable materials for drug delivery: Carriers, targeting moieties, and therapeutics.

Metamateriais: Os materiais que vão contra as leis da natureza!

Metamateriais é um termo utilizado para designar materiais artificiais que possuem propriedades não encontradas na natureza através da alteração da sua micro e macroestrutura ou da formação de um compósito.  Em 1967 na Ucrânia o cientista Victor Vaselago foi pioneiro nos estudos sobre metamateriais ao provar que era possível obter propriedades como o índice de refração negativo. Vaselago previu que um suposto material com permissividade elétrica e permeabilidade térmica, ambas negativas, exibiria tais comportamentos não convencionais, porém quem realmente concretizou a ideia foi o cientista John Pendry que desenvolveu materiais capazes de ter uma performance da maneira esperada por Vaselago!

As partículas para compor esse material devem ser pequenas o bastante para conseguir interagir com a onda magnética, ou as ondas devem ser muito grandes comparadas às metaparticulas. Sendo assim o desenvolvimento dessa ciência está fortemente relacionada com o desenvolvimento dos nanomateriais. Mesmo que não seja o ideal, Pendry utilizou anéis e pinos de um aço comum, já que a composição para esses materiais não é o ponto central e sim a sua estrutura e a sua ordenação.

Mas quais as aplicações que eles teriam?

Creio que uma das maiores indagações da humanidade é como fazer um material invisível e a partir dos estudos sobre metamateriais pode-se obter mantos de invisibilidade eletromagnética e acústica, que é um caminho para essa invisibilidade absoluta. Ainda mais pode-se conseguir imagens com uma maior ampliação em telescópios e microscópios.

Na California Institute of Technology são estudados tubos de cerâmicas que após serem comprimidos até 50% voltam ao seu estado inicial! O que é muito impressionante considerando que as cerâmicas geralmente são materiais frágeis e possuem uma recuperação elástica insignificante. A técnica utilizada foi construir uma camada atômica por vez para criar uma rede de tubos cerâmicos ocos, que possuem espessura na escala nanométrica.

Arranjo dos nanotubos cerâmicos. Fonte
Arranjo dos nanotubos cerâmicos. Fonte

Um outro exemplo deles é estudado pela Prof. Katia Bertoldi da Harvard University, que possui um coeficiente de poisson negativo, ou seja, quando o material ele é comprimido na direção y, por exemplo, ele será comprimido em todas as outras direções. E quando ele é esticado, também será expandido em todas as direções. O coeficiente afeta também na fadiga de um metal, por isso uma pesquisa é feita com parceria com a Rolls Royce para obter um design do produto que resistirá a mais ciclos de compressão antes de fraturar.

Com o avanço dessas tecnologias e dos estudos envolvidos, esses materiais poderão ser aplicados em produtos e em projetos onde outros não são adequados hoje, permitindo um desenvolvimento em todas as outras áreas da engenharia também. E nossos sonhos, como por exemplo a capa invisível, poderão se tornar realidade!

Leia mais em:

BBC News

Pioneers in metamaterials: John Pendry and Victor Veselago

A Revolução dos Metamateriais

Já conhece os polímeros que mudam de cor com a temperatura?

É cada vez mais comum e mais acessível a utilização em nosso cotidiano de materiais que sofrem uma alteração de cor estimulada por fatores externos, nos proporcionando conforto, aumentando a confiabilidade de produtos, melhorando aspectos estéticos ou mesmo a segurança de  componentes que compramos, etc.  Os materiais desta classe podem ser influenciados pela aplicação de pressão (piezocromismo), voltagem (eletrocromismo, lembram dos vidros que protegem os olhos de motoristas contra luz alta de faróis?), luz (fotocromismo) ou temperatura (termocromismo). O último desses fatores será o tema de nossa publicação de hoje:  termocromismo em polímeros!

termocromismo

Fonte: Diseño de Interiores.

Os polímeros termocrômicos nem sempre apresentam esta propriedade quando se encontram em seus estados naturais, algumas vezes essa característica é proveniente da interação deste material com aditivos. Sendo assim, a origem do termocromismo pode ser proveniente de três fatores, culminando em três classes de materiais: A primeira delas representa os polímeros que possuem intrinsecamente a característica de variação da coloração com a temperatura. A segunda, é aquela em que esta propriedade é proveniente dos pigmentos termocrômicos adicionados ao polímero, e não propriamente deste material. Por fim, a terceira classe apresenta característica termocrômica proveniente de uma interação físico-quimica entre matriz polimérica e aditivos, fazendo com que as propriedades termocrômicas sejam causadas pelo design do material , pois nenhuma destas substâncias apresenta o efeito separadamente.

Os aditivos mais comumente utilizados para conferir termocromismo a uma matriz polimérica são os corantes leucos. Estas substâncias normalmente são coloridas no estado sólido e incolores no estado líquido. Em outras palavras, sua cor é dependente da temperatura, tornando o aditivo uma substância termocrômica. O uso deste tipo de aditivo, no entanto, apresenta problemas de rápido envelhecimento, provocando um desbotamento da cor e limitando o tempo de vida do produto. Além disso, grande parte dos sistemas com corantes leucos pode conter bisfenol A, derivados de diazapentaleno, polidiacetilenos ou politiofenos, substâncias tóxicas que impedem a aplicação dos produtos nas áreas da saúde e alimentícia. Assim, por razão de grande parte dos materiais termocrômicos conhecidos ser tóxico ou carcinogênico, busca-se cada vez mais a pesquisa e o desenvolvimento de polímeros pertencentes à terceira classe, na qual a alteração de cor é efeito da interação entre duas substâncias não termocrômicas.  Não serão abordados os mecanismos de fabricação destes materiais devido à variedade de interações existentes e a complexidade das mesmas, mas basicamente as espessuras entre camadas compostas por diferentes materiais, distância entre partículas e também o índice de refração de cada componente são fatores que alteram a cor refletida, observada pelo olho humano. Assim, são utilizados artifícios para que estes fatores dependam da temperatura e consequentemente a cor do material também seja função da temperatura.

Em 2013, os alemães Seeboth, Lötzsch e Ruhmann descobriram que o uso de antocianidinas, substâncias naturais responsáveis pela coloração de diversas flores e frutos, poderia alcançar pela primeira vez efeitos termocrômicos sem o uso de substâncias tóxicas e carcinogênicas como aditivos termocrômicos. Como pode ser observado, o termocromismo é uma área que vem progredindo bastante nas últimas décadas. Parte dessa dedicação é estimulada por todas as aplicações que este tipo de material pode ter, como pulseiras que mudam de cor, indicando febre em humanos (principalmente em bebês, os quais são mais vulneráveis); embalagem de alimentos, indicando ao consumidor se aquele produto foi mantido em condições adequadas de temperatura para que seu consumo seja confiável; Revestimento para bolsas de sangue, informando se o mesmo foi mantido em condições de temperatura adequadas para sua conservação; Aplicações na indústria de tintas, comésticos e tecidos devido aos interessantes aspectos estéticos; Fabricação de brinquedos que mudam de cor, prendendo a atenção dos pequenos;  Usos em sistemas de segurança residenciais, utilizando como princípio alterações de temperatura.

Polímero que apresenta termocromismo.

Tendo em vista o avanço das últimas décadas de estudos, poderemos em breve ver diversos produtos com polímeros termocrômicos em nossas prateleiras.

Referências:

SEEBOTH, A.; LÖTZSCH, D.; RUHMANN,R.; MUEHLING, O. Thermochromic Polymers – Function by Design, Chemical Reviews, 2014, 114, 5, 3037;

SEEBOTH, A.; LÖTZSCH, D.; RUHMANN,R. First example of a non-toxic thermochromic polymer material – based on a novel mechanism. J. Mater. Chem. C, 2013, 1, 2811;

Investigadores portugueses desenvolvem pulseira para detectar febre em bebês;

Tinta Termocrômica;

Têxteis Inteligentes.

Kevlar – o polímero mais resistente do que aço.

Hoje falaremos sobre um polímero bastante especial, o Kevlar.  Este polímero enquadra-se no grupo de poliaramidas,  nome proveniente de três diferentes conceitos: poli, que significa muitos e refere-se ao grande número de repetições de uma mesma unidade estrutural – ou monômero – para formação das cadeias poliméricas;  ar de aromático, visto que a estrutura do Kevlar contém diversos anéis benzênicos; e amida, devido à presença desta função orgânica interconectando os anéis benzênicos na estrutura polimérica.

cadeias kevlar

Cadeias de Kevlar.  Fonte: Oficina da Web.

O Kevlar destaca-se por apresentar interessantes propriedades, tais quais resistência à corrosão e ao calor, baixo peso, manutenção de suas propriedades mesmo quando utilizado a baixas temperaturas, elevado módulo de elasticidade, grande resistência ao impacto e elevada resistência mecânica – o Kevlar é cerca de 7x mais resistente do que o aço por unidade de peso. Considerando que o Kevlar apresenta tamanha resistência, por que o polímero não é utilizado como componente estrutural de pontes, edifícios e demais obras da construção civil, mas sim o aço? Porque diferentemente do aço, o Kevlar apresenta baixa resistência à compressão, e esse tipo de solicitação é bastante comum nas estruturas mencionadas.

Ainda assim, as propriedades do Kevlar permitem aplicações surpreendentes. A mais famosa delas é o uso deste material como matéria-prima para coletes à prova de balas. Nesse caso, o polímero é produzido na forma de fios através de um processo denominado “air gap wet spinning”, no qual uma solução concentrada de Kevlar, muito quente e viscosa, é forçada através dos pequenos furos de um spinneret (espécie de fiandeira). Em seguida, a solução passa por uma cortina de ar e entra em um banho de coagulação, no qual o solvente é extraído e as fibras solidificam-se. Por fim, ocorre o bobinamento das fibras obtidas, as quais serão posteriormente tecidas e originarão os coletes, que terão resistência proporcional à quantidade de camadas utilizadas para sua confecção. O processo é mostrado no vídeo abaixo, no entanto o material processado é o Vinyon e não há a presença de cortina de ar. Convém destacar também que é utilizada uma solução de Kevlar para o processamento, na qual o polímero é misturado a um solvente, em vez de utilizar o material no estado fundido. Isso deve-se ao fato de que o Kevlar não é fusível, ou seja, quando aquecido o material sofre o fenômeno de decomposição, e não de fusão.

http://https://www.youtube.com/watch?v=ngEZMFaIrGE

O princípio de funcionamento de um colete à prova de balas é semelhante ao funcionamento de um brinquedo muito amado pelas crianças, a cama elástica. Quando o projétil entra em contato com o colete, as fibras de Kevlar absorvem parte da energia proveniente da colisão e a dissipam, o que normalmente é capaz de proteger o indivíduo atingido.  A absorção de energia é proveniente tanto da elevada resistência ao impacto do polímero quanto da forma com que as fibras são organizadas, tornando extremamente difícil separá-las. No entanto, algumas vezes a energia restante, destinada à pessoa atingida, ainda é capaz de feri-la fatalmente.

kevlar-bullet-proof-vest

Colete à prova de balas feito de Kevlar – Fonte: Wise Geek.

Outros usos do Kevlar, segundo a própria DuPont, fabricante do material, é em pistas de esqui, nas trilhas em ziguezague, em terrenos desérticos exigentes e até mesmo no espaço. Além disso, o polímero pode ser utilizado para forrar o compartimento do motor de aviões,  para a fabricação de raquetes de tênis, composição de alguns pneus e capacetes, capas de celulares, ou mesmo em abrigos para proteção contra tornados. A versatilidade deste material é inquestionável!

Fontes:

Mundo Educação;

Tecmundo;

Explain that Stuff;

Wise Geek;

DuPont;

Oficina da Web;

Gateway Coalition.

Por que as teias de aranhas são tão resistentes?

Quando eu tinha uns 8 anos de idade cheguei impressionada contando para uma amiga minha que as teias de aranhas eram consideradas um material mais resistente que os aços, então ela acabou com todo o meu entusiasmo com uma simples pergunta: “Mas como elas podem ser tão resistentes se consigo destruí-las apenas passando a minha mão sem esforço algum?”
Bom, naquela época eu nem sabia o que era a engenharia e ciência de materiais e nem fazia ideia de como responder aquela pergunta. Mas hoje com o pouco conhecimento que tenho tentarei responde-la!
O que eu descobri foi que um fio de teia de aranha é inúmeras vezes mais forte do que o aço, se considerarmos a força resistida em relação ao seu peso. Porém, um fio tem cerca de um décimo do diâmetro de um fio de cabelo, então se a teia tivesse o diâmetro próximo ao de um lápis, provavelmente esse material conseguiria parar um Boeing em pleno vôo.
E qual exatamente é o material que a compõe?
A teia é um co-polímero anfifílico (ou seja, possui fragmentos hidrofóbicos e hidrofílicos) constituido de duas proteínas, cada uma contendo três regiões que fornecem ao material diferentes propriedades. Uma dessas regiões é amorfa que fornece a propriedade de elasticidade para a teia, assim quando um inseto atinge a teia ela absorve a energia cinética. As outras duas geralmente são cristalinas, são bem pregueadas e resistem ao estiramento, além disso uma dessas regiões possui rigidez. Essas pregas das regiões cristalinas menos rígidas não só encaixam nas dos cristais rígidos, mas também interagem com áreas amorfas nas proteínas, assim ancoram os cristais rígidos à matriz.  Como consequência teremos um material tenaz, resistente e elástico, que são muito maiores ao compararmos com outros materiais naturais ou sintéticos, como vemos na tabela abaixo:
Tabela 1 – Comparação do tipo de material com seu respectivo módulo elástico, resistência e energia necessária para rompe-lo. Fonte
1
Na fabricação das teias, a aranha cisalha a proteína ao mesmo tempo que realiza a extrusão dela das suas glândulas. Paralelamente há a expulsão de água, fazendo com que os fragmentos hidrofílicos se projetem para fora, que leva ao desdobramento de uma estrutura conhecida como barris. Por isso, ocorre uma mudança macroscópica na emulsão, assim leva a uma polimerização que gera os fios das teias com a sua enorme resistência mecânica.
 2
Espero que eu tenha tirado essa dúvida de vocês e para questões mais técnicas, seguem os links das fontes que eu utilizei abaixo!
Fontes:

Isopor feito com cogumelos?

Ao longo dos anos nos acostumamos cada vez mais com o uso de plásticos no nosso cotidiano. O isopor, que nada mais é do que o poliestireno expandido (EPS), encontramos na chegada dos nossos eletrodomésticos às nossas casas, na forma de embalagem, até no copo de café que compramos em qualquer lanchonete. O que muita gente não sabe é que estima-se que esse polímero leva por volta de 150 anos para se degradar, sendo que o utilizamos muitas vezes apenas durante minutos, além de ocupar aproximadamente 25% dos aterros sanitários. Ele também é um produto sintético, derivado do petróleo e que precisa de uma grande quantidade de energia na sua manufatura (um cubo com aresta de 33cm consome 1,5 litro de petróleo!), como muitos dos plásticos que somos habituados, e a sua reciclagem é cara, devido a baixa densidade do material e consequentemente grande volume, encarecendo o transporte.
Por isso, muitos pesquisadores estudam alternativas para o isopor. Uma dessas soluções foi encontrada pelo americano Eben Bayer da empresa Ecovative, que junto com sua equipe utilizou cogumelos para fazer um polímero que possua propriedades semelhantes ao poliestireno expandido.
Diferente dos polímeros industriais, que se transformam cada vez em menores partículas, o cogumelo está no ciclo de reciclagem natural do nosso planeta e por isso ele irá se decompor até mesmo em seu jardim, em um curto período de tempo. A parte do cogumelo utilizada para a produção do produto é o micélio, ela é utilizada no processo como uma cola, e essa propriedade dela permite que seja moldado como fazendo na indústria habitual. Além disso, ela torna o material isolante térmico e acústico, não inflamável, que resiste ao vapor e à umidade e com boa resistência ao impacto.
1
A manufatura desses materiais pode ser divididades em 4 passos:
1. Selecionar a matéria-prima. Segundo o Eben, ela de preferencia tem que ser regional, por exemplo na China eles utilizam casca de arroz e na América do Norte utiliza-se casca de trigo ou aveia.
2. Preencher um molde com o formato que você deseja obter com o material.
3. Crescimento do micélio com essas partículas de matéria-prima. Nota-se que o organismo que trabalhará nessa etapa e não um equipamento.
4. Finalmente o produto! Ele pode ser embalagem ou um bloco de construção, por exemplo.
2
Para ver como funciona a produção desde o desenvolvimento do material até se tornar um produto veja o vídeo abaixo:
Caso tenha um maior interesse sobre a empresa e o seu produto, você pode dar uma olhada no TEDTalk do seu co-fundador Eben Bayer em 2010.
Até a próxima semana!
Fontes:

Você realmente conhece o Teflon?

No final dos anos 30 foi inventado pelo americano Roy J. Plunkett o politetrafluoretileno (PTFE), mais conhecido como Teflon e registrado pela companhia DuPont. Por mais que nós conheçamos ele geralmente por sua função antiaderente nas nossas panelas, a sua primeira aplicação foi bem diferente: A indústria bélica.
Durante a Segunda Guerra Mundial designers procuravam um material que fosse resistente aos componentes corrosivos das bombas e para essa aplicação eles utilizaram o PTFE. Apenas em 1954 dois engenheiros franceses descobriram que panelas revestidas desse material faziam com que a comida não grudasse nelas. Hoje, o Teflon possui inúmeras aplicações, como por exemplo na odontologia na área de regeneração óssea e tecidual e na medicina em forma de próteses. Além disso, pode ser utilizado para a fabricação de eletrodos e para a impermeabilização de tecidos.
2
Para entender como esse material possui a propriedade antiaderente, temos que olhar primeiramente a sua estrutura química. O monômero do polímero, representado na figura abaixo, nos mostra que ao longo de todas as cadeias do PTFE existem apenas átomos de carbono e flúor.
3
A forte ligação entre esses dois átomos pode ser explicada pela alta eletronegatividade do flúor.
Mas o que é eletronegatividade mesmo? Quando um átomo é muito eletronegativo há uma grande atração de elétrons por seu núcleo.
Através da tabela periódica abaixo, vemos que o flúor é o elemento mais eletronegativo. Por essa razão, as forças elétricas envolvidas nas moléculas, conhecidas como forças de Van der Waals, fazem com que os compostos contendo flúor repilam quaisquer átomos que se aproximem.
Por isso, é um material com grande estabilidade química em baixas temperaturas e que possui um dos menores coeficientes de atrito.
1
Uma das grandes discussões hoje em questão é a toxicidade ou não do material. Sabemos que a pirólise do Teflon começa por volta de 220°C, porém cientistas acreditam que só fará mal à saúde se a temperatura em que o produto é exposto for maior do que 250°C. A pirólise gera alguns gases tóxicos como produtos da reação, alguns deles estão nessa lista. Esses podem ter diversos efeitos nos seres humanos e nos outros animais e podem até mesmo parecer com sintomas semelhantes aos do vírus da gripe.
Para termos uma noção, a carne é frita entre 200-232ºC e o ponto de fumo da maioria dos óleos é antes de 260°C. Por isso, é muito importante sabermos quais materiais podemos e não podemos usar em certas situações do nosso dia.