Materiais autorreparáveis

Materiais falham a todo momento, seja por envelhecimento, desgaste, fadiga, ação de defeitos concentradores de tensões, ou outros fatores.  Assim, é necessária ação humana para repará-los, substitui-los ou agir preventivamente para evitar que o componente falhe. Imaginem como nossas vidas, tanto pessoal como profissional, seriam simplificadas se os materiais fossem autorreparáveis e não precisássemos fazer monitoramento, substituições ou reparos preventivos para evitar falhas, tampouco reparar ou substituir o material em caso de danos. Construções seriam mais seguras, carros batidos não precisariam ser arrumados em oficinas, aviões não precisariam passar por um monitoramento tão rigoroso de trincas.  Pensando em tudo isso, pesquisadores do mundo todo começaram estudos sobre materiais autorreparáveis a partir dos anos 2000. Até então, esta interessante característica foi conseguida principalmente por 4 diferentes mecanismos:  adição de agentes reparadores; criação de rede vascular interna, similar a nosso sistema circulatório; memória de forma e fornecimento de energia a termoplásticos.

O primeiro mecanismo – adição de agentes reparadores –  é utilizado principalmente em polímeros termofixos e compósitos de matriz polimérica. O método consiste em dispersar ao longo da matriz polimérica catalisador na forma de pó e pequenas cápsulas contendo um monômero líquido. Quando há a formação de trincas, não somente o material polimérico é danificado, mas também algumas das cápsulas, o que fará com que o monômero seja liberado e mova-se por capilaridade até ocupar toda a região da trinca. Assim, quando este encontra o catalisador sólido, inicia-se uma reação de polimerização que preencherá completamente a região danificada. Os materiais que contém agentes reparadores dispersos em cápsulas apresentam ótimos níveis de eficiência em autorreparação, sejam eles submetidos a um carregamento estático ou dinâmico.  O maior problema deste método é que as cápsulas devem ser muito pequenas para que não fragilizem o polímero, pois atuam como pequenos defeitos na microestrutura. Isto limita o tamanho das trincas que podem ser preenchidas, pois uma quantidade menor de monômero consegue ser encapsulada. Além disso, o material só pode ser reparado uma única vez em determinada região, pois quando a segunda trinca iniciar, não haverá mais cápsulas a serem rompidas para preenchê-la.

Encapsulamento

Autorreparo por adição de agentes reparadores. Fonte (em inglês): MURPHY e WUDL, 2010.

Uma segunda maneira de produzir materiais autorreparáveis é bastante inspirada na forma com que nosso próprio organismo se cura: levando o agente reparador até a região que precisa ser reparada por meio de um sistema vascular. Esta técnica também é comumente utilizada para termofixos e compósitos de matriz polimérica, e o preenchimento das trincas, assim como no método anterior, é realizado por polimerização. Assim, são necessários dois sistemas vasculares, um contendo uma resina líquida e o outro, um endurecedor líquido. Estas substâncias, ao entrarem em contato, desencadearão uma reação de polimerização que reparará a região danificada. Este método é bastante limitado se funcionar apenas por capilaridade, pois só serão reparadas efetivamente regiões que se encontrem a distâncias menores do que a dimensão do diâmetro do tubo. Assim, surgiu outra ideia baseada em nosso organismo: pressurizar o sistema vascular através do bombeamento das substâncias, melhorando a eficiência deste método de reparo. Em comparação com o método de encapsulamento de agentes reparadores, a formação de canais vasculares consegue fechar trincas 10x maiores. No entanto, o reparo é mais devagar, pois os agentes reparadores precisam percorrer maiores distâncias até que cheguem à região danificada. Assim, se a trinca propagar-se mais rápido do que estiver sendo reparada, o método não conseguirá pará-la.

Outro método para um material autorreparar-se é estimulando-o a retornar a sua forma inicial, se este possuir memória de forma. A memória de forma é uma propriedade apresentada por determinadas ligas metálicas, como ouro-cádmio, nitinol ou cobre-zinco, que permite com que sejam deformadas plasticamente e quando aquecidas voltem instantaneamente a sua forma original. (O mecanismo de memória de forma foi explicado anteriormente neste post).  Até agora consideramos como falha de materiais a formação e propagação de trincas. No entanto, se uma região de um componente sofrer uma deformação plástica indesejada, isto também é caracterizado como falha. Neste caso, podemos repará-la através do envio de calor àquela região, realizado através de um sistema bastante similar ao de vascularização que vimos no parágrafo anterior. Trata-se de uma rede de fibras ópticas, na qual ao invés de fluir resina ou endurecedor, há o transporte de luz de um laser até o ponto de falha, no qual há o rompimento local das fibras ópticas. Assim, a região recebe calor proveniente do laser e elimina a deformação plástica adquirida, revertendo o dano. Além de tudo isto, a fibra óptica ainda atua como agente de reforço, produzindo um compósito. Quem teve esta ideia brilhante? Um engenheiro de materiais, é claro. Seu nome é Henry Sodano.

Para polímeros termoplásticos, não é necessário a elaboração de estruturas tão complexas, apenas um pouco de calor. Esta classe de material pode ser moldada com a temperatura, então se pudermos fundir estes polímeros sob tensão, as cadeias podem se rearranjar e após o resfriamento, retomar a estrutura inicial do polímero.  Partindo deste princípio, alguns polímeros foram testados através do impacto de projéteis. Sim, literalmente atirou-se nos polímeros! A energia proveniente do choque foi tão grande, que permitiu uma grande elevação na temperatura e, em seguida, o fechamento do buraco deixado pelo projétil. A experiência é mostrada na figura abaixo.

experimento_projeteis

Autorreparo de termoplástico impactado por um projétil

Estes materiais são incríveis e podem revolucionar nossas vidas nos próximos anos. Nós, como engenheiros de materiais, devemos difundi-los e aprimorá-los ainda mais!

Referências:

Explain That Stuff;

B.J. Blaiszik; N.R. Sottos; S.R. White; Nanocapsules for self-healing materials. Composites Science and Technology vol. 68, p. 978–986, 2008.

R. Hamilton; N. R. Sottos; S. R. White; Pressurized vascular systems for self-healing materials. R. Soc. Interface Vol. 12, 2011. Disponível em: < ttp://rsif.royalsocietypublishing.org/content/royinterface/early/2011/09/21/rsif.2011.0508.full.pdf>

E. B. Murphy; F. Wudl; The world of smart healable materials.  Progress in Polymer Science vol. 35, p. 223–251, 2010.

A vantagem dos polímeros

Nessa semana assisti uma palestra apresentada por um engenheiro da empresa Solvay sobre uma das maiores tendências do momento: A substituição dos metais pelos polímeros.

Esse fenômeno ocorre porque hoje há o desenvolvimento de polímeros com propriedades equivalentes ou até maiores do que metais. Assim, essa gama de materiais pode ser classificada conforme a pirâmide abaixo:

pyramid-of-plastic-performance

Pirâmide polimérica

Na maioria das vezes os materiais substituintes estão no topo da pirâmide, como o PEEK e o PBI e possuem propriedades superiores aos demais, já os que estão na base da mesma, como PET, PP e PE são geralmente utilizados na fabricação de embalagens ou brinquedos, ou seja, não possuem aplicações que necessitam alto desempenho do material.

As principais vantagens obtidas através dessa permuta de materiais em certas aplicações são a redução do peso, redução do custo, melhoria nas propriedades de resistência química e há uma redução no barulho produzido pelos componentes. Além disso não é necessário fazer operações secundárias na manufatura e é possível fabricar peças com geometria complexa.

Um exemplo muito interessante é o projeto Solar Impulse, que é apoiado pela Solvay e consiste em um avião solar de longo alcance que visa a volta ao mundo utilizando apenas a energia solar. Para isso ser possível em várias partes do avião foram utilizadas peças feitas com polímeros ao invés de metais, que irão fornecer ao avião um menor peso e consequentemente um menor consumo de energia. Dois materiais utilizados foram PPA e PVDF, que possuem alta resistência aos raios UV. O vídeo abaixo fala um pouco mais sobre o Solar Impulse:

Outro caso bem interessante, que não foi comentado na palestra e não é da Solvey, é a substituição dos componentes metálicos dos braços biônicos. Próteses chegam a custar mais de 40 mil dólares e através da troca do material e do design foi possível ter um custo de fabricação de apenas 300 dólares! Ou seja, chegará no consumidor final por um custo muito menor, assim o número de pessoas que poderão ter acesso será muito maior, o que é simplesmente incrível. O vídeo abaixo mostra ela em funcionamento:

Ainda, polímeros reforçados com fibras podem possuir resistência mecânica muito maior que os metais e polímeros, como o AMODEL (PPA), IXEF (PARA) e Ketospire (PEEK) que possuem resistência à tração e peso específico próximos aos de metais, mas o seu módulo de elasticidade ainda é muito menor.

Ademais, eles ainda possuem inúmeros desvantagens em relação aos metais, como por exemplo menor vida útil e maior agressão ao meio ambiente. Sabe-se que ainda há muito para melhorar na reciclagem dos polímeros, pois hoje ao serem reciclados, o produto final obtido não tem as mesmas propriedades do que o reciclado. Além disso, para a reciclagem diferentes tipos de polímeros não podem ser misturados, porque causará contaminação e sem contar que não são materiais biodegradáveis, causando vários problemas ambientais.

Em relação aos problemas técnicos ainda é muito difícil ter uma peça polimérica com tolerância dimensional baixa e com um design complexo, para essas aplicações os metais são a melhor opção!

Para otimizar o processo, essas equipes de desenvolvimento usam softwares de simulação de engenharia preditiva (CAE/CAD), que muitas vezes substituem a necessidade de testes reais. Foi comentado também sobre as impressoras 3D, mas essas ainda não são utilizadas para polímeros de alta performance e sim para aqueles que se encontram na base da pirâmide.

E você de qual time é, metais ou polímeros?

Até a próxima semana (:

Supercondutividade cada vez mais próxima da temperatura ambiente

Supercondutores são materiais que apresentam resistência elétrica nula sob determinadas condições externas, normalmente baixas temperaturas e pequenos campos magnéticos. São essas condições restritivas, principalmente a temperatura, que limitam significativamente o desenvolvimento de produtos a partir de supercondutores. Um dos materiais de mais alta temperatura crítica à pressão ambiente, que é a temperatura máxima na qual o supercondutor mantém suas propriedades, é a cerâmica de composição Hg0,8Tl0,2Ba2Ca2Cu3O8, cuja temperatura crítica é cerca de -135°C. Apesar de extremamente elevada comparada aos supercondutores descobertos inicialmente, cujas temperaturas críticas ficam em torno de -270 a -234°C, essa temperatura ainda é bastante distante da temperatura ambiente, tornando necessário o uso de sistemas de refrigeração, que implicam em alto custo e alto gasto energético para desenvolvimento de produtos a partir de supercondutores. O vídeo abaixo mostra um exemplo de utilização de um supercondutor para o desenvolvimento de um equipamento de lazer, uma espécie de skate denominada Hoverboard. Reparem que é necessária constante emissão de gás para refrigeração do componente, mantendo-o a baixas temperaturas.

Agora imaginem a revolução em nosso cotidiano se fossem descobertos materiais supercondutores à temperatura ambiente! Poderíamos desenvolver mundo afora trens que transitam a altas velocidades sem atritar com os trilhos, poderíamos produzir diversos equipamentos para lazer e componentes com aplicações ainda inimagináveis para nós. Estamos um passo mais próximos desta realidade de supercondução à temperatura ambiente, no entanto apenas para aplicações, em um primeiro momento, em componentes de pequena dimensão, como aqueles presentes na indústria eletrônica. Essa evolução é devido à recente síntese do estaneno, no começo de agosto de 2015, pela equipe de Zhang, através de uma parceria entre China e Estados Unidos. O estaneno é um material semelhante ao grafeno, cuja estrutura é uma folha de átomos de espessura monoatômica, o que implica em um material de duas dimensões. Neste caso, os átomos que compõem esta estrutura são de estanho, diferentemente do grafeno, composto por átomos de carbono. O que torna o estaneno tão interessante é que cálculos físicos teóricos demonstram que ele exibe uma espécie de supercondutividade à temperatura ambiente, que pode ser elevada a até aproximadamente 100°C com a adição de átomos de flúor.

O estaneno não é exatamente um supercondutor, ele é um material denominado isolante topológico. Esta classe de materiais conduz eletricidade através das bordas e superfície do material sem oferecer qualquer resistência , pois a maioria das impurezas presentes não afeta o spin dos elétrons, que são os portadores de carga do sistema, e consequentemente há o desenvolvimento de supercondutividade, pois os elétrons não podem ser atrasados. Este comportamento, no entanto, não é apresentado no interior do material isolante topológico, mas uma vez que o estaneno possui a espessura de um único átomo, ele conseguirá conduzir corrente elétrica com 100% de eficiência. A equipe de Zhang também propôs que telúrio, selênio, antimônio e bismuto poderiam comportar-se como isolantes topológicos, no entanto esse comportamento não ocorre à temperatura ambiente como no estaneno.

Apesar de já sintetizado, até o momento as propriedades do estaneno não puderam ser confirmadas,  pois a síntese só funcionou a partir da deposição de átomos de estanho sobre um substrato de telureto de bismuto, material que interfere nas propriedades do estaneno. Assim, diversas equipes ao redor do mundo continuam suas pesquisas para encontrar formas mais simples e mais efetivas de produzir o material.

estaneno

Vista superior (a) e lateral (b) do estaneno sobre o substrato de telureto de bismuto. Fonte: ZHANG et al, 2015.

Além de dificultar a síntese e processamento, a estrutura bidimensional do estaneno de certa forma limita suas aplicações. As primeiras ideias de utilização para o estaneno é na indústria eletrônica, melhorando significativamente o rendimento de dispositivos como os microprocessadores, por diminuir a dissipação de calor e também a energia consumida pelos mesmos. Futuramente, pensa-se em ampliar a utilização de estaneno para outros componentes de um circuito, possivelmente até substituindo o silício na produção de transistores. Aplicações mais robustas, por enquanto, ainda necessitam da produção de novas tecnologias.. vamos resolver mais este problema, engenheiros de materiais?

Referências:

ASKELAND, D.; PHULÉ, P. “The Science and Engineering of Materials.” Cengage Learning, 2005.

DOE/SLAC National Accelerator Laboratory. “Will 2-D tin be the next super material?.” ScienceDaily. ScienceDaily, 21 November 2013. <www.sciencedaily.com/releases/2013/11/131121135635.htm>.

Estañeno: primeros trabajos para fabricar el nuevo hermano del grafeno

Yong Xu, Binghai Yan, Hai-Jun Zhang, Jing Wang, Gang Xu, Peizhe Tang, Wenhui Duan, Shou-Cheng Zhang. “Epitaxial growth of two-dimensional stanene”. Physical Review Letters (2013), 111, 136804. DOI: 10.1103/PhysRevLett.111.136804

O metal de 2 bilhões de reais

Quando pensamos em metais preciosos logo nos vêm à cabeça prata, ouro, platina.. Mas o valor econômico desses materiais nem se compara a um metal que você possivelmente nunca ouviu falar: o califórnio, que custa cerca de 2 bilhões de reais por quilograma. No entanto, antes que pensemos em percorrer o mundo à procura de minas de califórnio, é importante saber que esse material é produzido apenas em laboratório, por meio de aceleradores de partículas ou reatores nucleares.

O califórnio, representado pelo símbolo Cf, é radioativo e foi descoberto em 1950 por Thompson, Ghiorso, Street e Seaborg, durante a irradiação e fraccionamento de alguns microgramas de Cúrio 242 utilizando íons de hélio. Durante esse processo, foi detectada uma nova fonte radioativa, que se descobriu ser um novo elemento. Uma vez que a experiência ocorreu na Universidade da Califórnia, o elemento foi batizado de Califórnio, em homenagem ao estado norte-americano.

Apesar de apresentar um custo econômico tão elevado, o elemento é utilizado em várias aplicações, as quais, devido aos custos envolvidos, normalmente são de grande impacto e importância. Outro fator que permite seu uso é o fato de usualmente serem necessárias pequenas massas de califórnio, pois um único micrograma de Cf-252, por exemplo, produz 170 milhões de nêutrons. Assim, a produção média deste material nos anos 2000 encontrava-se próxima a 250 mg por ano. A propriedade de forte emissor de nêutrons permite o uso de compostos de califórnio em dispositivos medidores de umidade por nêutrons, os quais detectam fontes de água e óleo em poços de petróleo. Permite também, através da técnica de ativação de nêutrons, a detecção de minérios de prata e ouro, localização de minas terrestres e de explosivos, uso como fonte de radiação para medicina, no combate ao câncer, e análise da superfície de outros planetas por meio de sondas espaciais. Além disso, o material é uma excelente fonte de nêutrons para reatores nucleares. Outras aplicações interessantes do califórnio são a atuação em detectores de trincas, utilizados por exemplo no monitoramento do tamanho de trinca em estruturas de aviões, evitando que falhem durante o voo, e em detectores de metais, talvez a aplicação mais presente em nosso cotidiano.

Um dos maiores desafios, além da elaboração de técnicas que facilitem a obtenção de califórnio, diminuindo o custo da substância e expandindo suas aplicações, é o isolamento do material na forma metálica. Atualmente, somente alguns compostos foram obtidos e estudados, como óxido de califórnio (Cf2O3), tricloreto de califórnio (CfCl3) e oxicloreto de califórnio (CfOCl).

Fontes:

MARTIN, R. C.; KNAUER, J. B.; BALO, P. A. Production, distribution and applications of californium-252 neutron sources. Applied Radiation and Isotopes, v. 53, n. 4, p. 785-792, 2000.

Ciência e Tecnologias

Quimlab

Metamateriais: Os materiais que vão contra as leis da natureza!

Metamateriais é um termo utilizado para designar materiais artificiais que possuem propriedades não encontradas na natureza através da alteração da sua micro e macroestrutura ou da formação de um compósito.  Em 1967 na Ucrânia o cientista Victor Vaselago foi pioneiro nos estudos sobre metamateriais ao provar que era possível obter propriedades como o índice de refração negativo. Vaselago previu que um suposto material com permissividade elétrica e permeabilidade térmica, ambas negativas, exibiria tais comportamentos não convencionais, porém quem realmente concretizou a ideia foi o cientista John Pendry que desenvolveu materiais capazes de ter uma performance da maneira esperada por Vaselago!

As partículas para compor esse material devem ser pequenas o bastante para conseguir interagir com a onda magnética, ou as ondas devem ser muito grandes comparadas às metaparticulas. Sendo assim o desenvolvimento dessa ciência está fortemente relacionada com o desenvolvimento dos nanomateriais. Mesmo que não seja o ideal, Pendry utilizou anéis e pinos de um aço comum, já que a composição para esses materiais não é o ponto central e sim a sua estrutura e a sua ordenação.

Mas quais as aplicações que eles teriam?

Creio que uma das maiores indagações da humanidade é como fazer um material invisível e a partir dos estudos sobre metamateriais pode-se obter mantos de invisibilidade eletromagnética e acústica, que é um caminho para essa invisibilidade absoluta. Ainda mais pode-se conseguir imagens com uma maior ampliação em telescópios e microscópios.

Na California Institute of Technology são estudados tubos de cerâmicas que após serem comprimidos até 50% voltam ao seu estado inicial! O que é muito impressionante considerando que as cerâmicas geralmente são materiais frágeis e possuem uma recuperação elástica insignificante. A técnica utilizada foi construir uma camada atômica por vez para criar uma rede de tubos cerâmicos ocos, que possuem espessura na escala nanométrica.

Arranjo dos nanotubos cerâmicos. Fonte
Arranjo dos nanotubos cerâmicos. Fonte

Um outro exemplo deles é estudado pela Prof. Katia Bertoldi da Harvard University, que possui um coeficiente de poisson negativo, ou seja, quando o material ele é comprimido na direção y, por exemplo, ele será comprimido em todas as outras direções. E quando ele é esticado, também será expandido em todas as direções. O coeficiente afeta também na fadiga de um metal, por isso uma pesquisa é feita com parceria com a Rolls Royce para obter um design do produto que resistirá a mais ciclos de compressão antes de fraturar.

Com o avanço dessas tecnologias e dos estudos envolvidos, esses materiais poderão ser aplicados em produtos e em projetos onde outros não são adequados hoje, permitindo um desenvolvimento em todas as outras áreas da engenharia também. E nossos sonhos, como por exemplo a capa invisível, poderão se tornar realidade!

Leia mais em:

BBC News

Pioneers in metamaterials: John Pendry and Victor Veselago

A Revolução dos Metamateriais

MAX Phases – Cerâmicas com propriedades metálicas.

Nunca metais e cerâmicas estiveram tão próximos em comportamento como ocorreu após a síntese dos chamados Max Phases, descobertos na década de 90 e ainda hoje alvo de inúmeros estudos. Esse grupo de carbetos ou nitretos ternários abrange mais de 60 composições, representadas pela fórmula geral M(n+1)AXn, na qual M é um metal de transição, A é um elemento da família A (geralmente IIIA ou IVA), X é Carbono ou Nitrogênio e n é um número  que pode variar de 1 a 3. Esta fórmula geral, que apresenta os elementos M, A e X mencionados anteriormente e mostrados na Figura abaixo, é a razão pela qual o material possui este nome.  A Figura também apresenta as 60 MAX Phases descobertas até então.

Tabela

Fonte: An Introduction to MAX Phases – Prof. Michel Barsoum

Os materiais cerâmicos com que estamos habituados são frágeis, isolantes térmicos e elétricos e apresentam uma plasticidade extremamente baixa, diferentemente das características apresentadas por grande parte dos metais. Assim,  por serem bons condutores térmicos e elétricos (normalmente melhores do que o titânio), apresentarem boa resistência ao choque térmico, boa usinabilidade,  maior tenacidade do que as cerâmicas convencionais, elevada plasticidade a elevadas temperaturas e, em alguns casos, boa resistência à fadiga,  os MAX Phases são considerados verdadeiras pontes entre materiais metálicos e cerâmicos.  Outras propriedades comuns e de grande interesse tecnológico presentes nesses carbetos e nitretos ternários são o baixo peso, resistência à fluência e à corrosão e coeficientes de expansão térmicas relativamente baixos.

Devido às suas propriedades, as aplicações dos MAX Phases envolvem principalmente situações em elevadas temperaturas, como bicos queimadores de gás, refratários dúcteis e usináveis ou também componentes resistentes à irradiação de nêutrons na indústria nuclear, recobrimento para contatos elétricos e utensílios de cozinha antiaderentes.  No entanto o uso deste grupo de materiais ainda não é tão difundido devido ao alto custo. Como são processados normalmente a partir de pós  elementares ou de carbetos binários,  o preço final desses materiais é extremamente dependente do preço dessas matérias primas, e apresenta-se em torno de 500 dólares por quilograma. Ao final do processamento, os MAX Phases podem ser obtidos na forma de pó, espumas, filmes finos, revestimento ou em sólidos que serão posteriormente trabalhados para adquirir a geometria dos componentes desejados. É esperado que com o desenvolvimento tecnológico e com o aumento da demanda futura para os MAX Phases, sejam desenvolvidas novas formas de síntese a partir de pós de menor custo, aumentando a competitividade da classe de materiais.

Fontes:

An Introduction to MAX Phases;

MAX phases: Bridging the gap between metals and ceramics.

Metais hidrofóbicos a partir de lasers!

Cientistas da Universidade de Rochester, que fica em Nova York, descobriram uma forma de transformar metais comuns como titânio, platina e latão, em materiais muito hidrofóbicos com pulsos de laser de 1fs (10^(-15) segundo)! Ou seja, não são utilizados revestimentos temporários, como a maioria dos produtos já existentes, e sim é intrínseco do material.

University of Rochester Institute of Optics professor Chunlei Guo has developed a technique that uses lasers to render materials hydrophobic, illustrated in these images taken in his lab December 19, 2013.  // photo by J. Adam Fenster / University of Rochester

Gota de água sobre material. Fonte: University Rochester

Esses materiais são muito importantes, pois são resistentes à oxidação, não congelam e reduzem a adesão de contaminantes na superfície. Por exemplo, uma de suas possíveis aplicações é na indústria aeronáutica, na fabricação das superfícies de aviões, já que precisam evitar o congelamento de água na fuselagem ou até mesmo canos de ar de refrigeradores e de ares condicionados.

Pode-se fazer uma analogia do metal com as folhas de lótus, que possuem uma microestrutura em torno de 10-50 μm e uma nanoestrutura de 200 nm. Essa estrutura junto com uma cera epicuticular hidrofóbica cria um material super hidrofóbico, que possui um efeito auto-limpante, pois quando a água cai sobre as folhas, ela leva consigo as partículas de sujeira.

lotus-leaf-dew

Folha de lótus. Fonte

Segundo o paper publicado pelos pesquisadores Guo e Vorobyev no Journal of Applied Physics, o processo através dos pulsos de laser consiste em criar uma superfície com um padrão complexo de nano (5-10 nm)  e microestruturas (75-100 μm), que concedem aos materiais propriedades assim como as das folhas acima.  E a parte mais interessante disso tudo é que o metal é intrinsecamente hidrofílico e após o processo com laser ele se torna mais hidrofílico ainda. Então como ele vira hidrofóbico? O segredo é o contato com o ar, essa transição pode ser explicada através de uma reação química entre a superfície e o CO2, que resulta numa acumulação de carbono e seus compostos na superfície tratada.

Para possuírem esse efeito auto-limpante e serem considerados super hidrofóbicos, o material deve ter um ângulo de contato de pelo menos 150°, um pequeno ângulo de deslizamento <10° e a adesão entre a superfície e as partículas de sujeira deve ser menor do que entre essas partículas e a água. E os resultados obtidos foram um ângulo de contato de 158° e ângulo de deslizamento de 4º.

No vídeo podemos ver como funciona esse efeito da folha de lótus nos metais super hidrofóbicos:

http://http://www.youtube.com/watch?v=1CYJtJWbnk0

Nesse outro mostra um pouco mais sobre o material, como ele funciona na prática e os seus benefícios em relação a outros materiais (compara até com o Teflon, sobre o qual já escrevemos aqui).

Até semana que vem!

Fontes:

Rochester University

A. Y. Vorobyev; Chunlei Guo. Multifunctional surfaces produced by femtosecond laser pulses. Journal of Applied Physics 117, 033103 (2015); doi: 10.1063/1.4905616.

Alotropia e sua importância na engenharia de materiais

Olá galera,

O tema de hoje é alotropia, ou seja, a capacidade de um elemento químico formar diferentes substâncias simples. Essas substâncias, denominadas formas alotrópicas, diferem-se entre si  no que diz respeito a suas estruturas cristalinas ou atomicidade e, por causa desses fatores que podem parecer apenas detalhes, as características e propriedades das substâncias em questão podem ser tornar completamente diferentes.

Um exemplo de elemento químico que sofre alotropia é o estanho:  Ele pode se organizar em uma estrutura tetragonal de corpo centrado (imagem à esquerda), denominado estanho branco ou em uma estrutura cúbica semelhante à do diamante (imagem à direita), caracterizando o estanho cinza.

estruturas estanho

Estruturas cristalinas das formas alotrópicas do estanho. Adaptado de: Os alótropos do estanho.

A transformação de estanho branco em cinza leva a uma expansão no volume em aproximadamente 27%, culminando na desintegração do material. Apesar de a temperatura de transição ser 13,2°C, a transformação de forma alotrópica acontece a uma taxa muito lenta em condições normais de temperatura, então o fenômeno pode de certa forma ser desprezado. No entanto, a utilização de estanho em regiões de frio extremo pode ter resultados dramáticos, caso sua transformação alotrópica não seja lembrada, como aconteceu em 1812 na Rússia. Naquele ano, houve um inverno bastante rigoroso, com um período longo de temperaturas bastante baixas, assim a taxa de transformação de estanho branco em estanho cinza, mais estável em temperaturas abaixo de 13,2°C do que a primeira substância,  foi rápida o suficiente para que seus efeitos pudessem ser sentidos. As consequências? Durante o inverno daquele ano aconteciam as invasões Napoleônicas na Rússia e exatamente no período em que os soldados deveriam estar mais agasalhados, os botões de seus uniformes esfarelaram-se e desfizeram-se em pedaços. Há historiadores que dizem que este foi um dos principais motivos a contribuir para a derrota de Napoleão Bonaparte. Além disso alguns tubos de órgãos de igrejas também foram destruídos por essa transformação. Devido a esses casos, a transição alotrópica do estanho chegou a inclusive ser batizada como “doença do estanho”.

fases alotropicas

Estanho branco (acima) e estanho cinza (abaixo). Fonte: CALLISTER

Outro elemento que possui alotropia é o ferro, o qual é o principal elemento a compor o aço, um dos materiais mais utilizados no meio industrial, construção civil e mais presentes no dia-a-dia dos engenheiros de materiais. Portanto, conhecer as transformações alotrópicas do ferro e saber explorá-las é de extrema importância.

Primeiramente, as transformações alotrópicas do ferro ocorrem a temperaturas muito superiores à temperatura ambiente (910°C e 1400°C), de forma com que devam ser compreendidas não para evitar problemas, como no caso do estanho, mas sim para compreender como processar o material de forma a atingir as propriedades que lhe são requisitadas.

alotropia do ferro

Fases alotrópicas do ferro e suas temperaturas de estabilidade. Fonte: Ciência dos Materiais

A partir da Figura acima, verifica-se que a temperaturas abaixo de 910°C, o ferro apresenta estrutura cristalina cúbica de corpo centrado (CCC), denominado ferro α. Acima dessa temperatura, ocorre a transição para uma fase γ de estrutura cúbica de faces centradas (CFC), alterando o comportamento do ferro. Continuando o aquecimento do ferro γ, atinge-se uma temperatura (1400°C) na qual esta deixa de ser a fase mais estável termodinamicamente, dando lugar ao ferro δ, que é estável até 1539°C, temperatura na qual torna-se líquido.  A transição mais estudada e de maior importância é a de ferro α para γ. Analisando-se as características de cada uma dessas fases, constatou-se que o ferro γ apresenta uma solubilidade muito maior de carbono do que o α. A partir desse conhecimento, pensou-se em utilizar o ferro γ para fazer aços com maiores teores de carbono, pois seria possível dissolver esse elemento em quantidades superiores ao que seria possível em ferro α.  Você pode estar se perguntando, por que dissolver carbono no ferro γ se ao resfriar o material à temperatura ambiente esse carbono não será mais solúvel na fase α e vai se precipitar no ferro?  Na verdade esse resfriamento até a temperatura ambiente é feito de maneira bastante rápida e, dessa forma, o carbono continua dissolvido na matriz, pois não tem tempo de sair dos interstícios da rede composta por átomos de ferro. O resultado é um aço com novas propriedades, por exemplo maior resistência mecânica e dureza e que possui uma rede cúbica de corpo centrado distorcida pela presença de uma quantidade excessiva de carbono, a chamada estrutura tetragonal de corpo centrado (TCC). Esse aço é denominado de martensítico.

estruturas aço

Estruturas cristalinas CCC, CFC e TCC, respectivamente. Adaptado de: Princípios de Tratamentos Térmicos em Aços e Ferros Fundidos.

Outras propriedades que merecem destaque na austenita (ferro γ + carbono), é que possui menor dureza em relação à ferrita (ferro α + carbono), apresenta grande resistência ao desgaste, é magnética, e é o constituinte mais denso dos aços. Caso deseje-se um material com alguma dessas características, é possível fazer algo para manter a austenita mais estável do que a ferrita à temperatura ambiente? Sim! Por meio da adição de elementos de liga, por exemplo, os quais podem mudar a temperatura de transição de fases para uma temperatura superior ou inferior à original, favorecendo a formação de um tipo de fase ou de outro em uma determinada temperatura. O próprio carbono dos aços abaixa essa temperatura de transição α-γ de 910°C para aproximadamente 723°C.

A partir dos casos mencionados, verifica-se que um bom engenheiro de materiais deve conhecer um pouco sobre a alotropia dos elementos químicos com que trabalha para poder explorar suas propriedades ou prever possíveis desastres. Os elementos estanho e ferro foram selecionados para esse post por entender-se que teriam maior impacto no âmbito da engenharia de materiais, no entanto elementos como carbono, enxofre, fósforo e oxigênio também sofrem alotropia e fica como sugestão a leitura sobre esses casos.

Fontes:

CALLISTER, William D. Ciência e engenharia de materiais: uma introdução. 7. ed. Rio de Janeiro: LTC, c2008. xx, 705 p.;

Constituintes estruturais de equilíbrio dos aços;

Ciência dos Materiais;

Os alótropos do estanho.

Já ouviu falar sobre Liquid Metals?

O fato de alguns metais serem líquidos em temperatura ambiente, como o mercúrio e o gálio, não é nenhuma novidade, mas você já ouviu falar sobre ligas com aço, alumínio e titânio, que são chamados de Liquid Metals? É exatamente sobre isso que falarei hoje! applying-low-voltage-to-liquid-metal-alloys-changes-the-surface-tension_1646_668919_0_14108217_500 A primeira vez que ele foi comercializado foi no ano de 2003, ou seja, é um material relativamente novo nesse mundo. Ele geralmente é utilizado em componentes eletrônicos e em 2010 a Apple comprou os direitos de uso e de comercialização desse tipo de metal.

Por que teve tanto interesse por parte da Apple? Esse material possui propriedades muito superiores aos materiais antigamente utilizados, algumas delas são: 2,5x mais resistente do que o titânio; dureza 1,5x maior do que um aço inoxidável; 2-3 vezes mais resistente à deformações plásticas do que um aço comum; não corrosivo; alta condutividade térmica e elétrica, entre outras.

Mas o que é realmente o metal líquido? Primeiramente ele não é líquido em temperatura ambiente, mas ele é chamado dessa forma pela forma que suas moléculas se comportam. Como pode ser visto no vídeo de 3 minutos parte de um documentário da History Channel sobre esse metal: https://www.youtube.com/watch?v=-uOPXquIMt4&feature=player_embedded

Ele é parte de uma classe de metais conhecido como metais vítreos, porque algumas das suas propriedades estão fortemente relacionadas com os vidros, como o seu ponto de fusão, que não é fixo como os outros metais e sim ocorre uma perda gradual da sua integridade com o aumento da temperatura.

E como é produzido? Eles são resfriados rapidamente para induzir uma microestrutura amorfa, o que muda suas estruturas atômicas e geram átomos desorganizados, possuindo uma resposta elástica à tensões de deformação. Os metais comuns são geralmente cristalinos e tendem a deformar plasticamente quando tencionados e flexionados.

Abaixo podemos ver um vídeo de comparação da elasticidade do Liquid Metal com metais usuais:

Bom final de semana e lembrando que na próxima teremos mais dois posts novos!

Leia mais em:

Apple e o LiquidMetal

What is Liquid Metal?

Applying low voltage to liquid metals

Ligas com Efeito de Memória de Forma (LEMF)

Oi, galera!
Vocês já ouviram falar de materiais com propriedade de memória de forma? O curioso fenômeno ocorre em algumas ligas de ouro-cádmio, cobre-zinco, mas é conhecida principalmente em uma liga denominada nitinol, a qual é composta por níquel e titânio.
O efeito de memória de forma permite que o material seja deformado plasticamente e quando aquecido volte instantaneamente à sua forma original, como mostra o vídeo.

É impressionante! As aplicações desses materiais são inúmeras, partindo das áreas de robótica e biomecânica até as indústrias naval, nuclear, aeronáutica e automobilística.

Como funciona o efeito de memória de forma? O que as ligas com efeito de memória de forma têm em comum que lhes confere esse comportamento? Uma transformação de fases! Basicamente, quando se encontram à temperatura ambiente as ligas apresentam uma fase monoclínica denominada martensita. O aumento da temperatura, no entanto, diminui a estabilidade da fase martensítica e seus cristais adquirem forma cúbica, caracterizando uma nova fase, a qual é denominada austenita. A temperatura que marca a transição entre essas fases é conhecida por temperatura de transformação. O principal fator para a ocorrência da memória de forma é a capacidade da fase martensítica de sofrer maclação. Dessa forma, ao aplicar-se uma força externa, o material é deformado plasticamente sem que haja ruptura das ligações entre átomos e, consequentemente, sem ocasionar danos permanentes à sua estrutura. Isso permite que, quando o material for aquecido acima de sua temperatura de transformação, sua fase martensítica seja convertida em austenita, a qual apresentará a mesma estrutura que possuía antes de o material sofrer qualquer deformação, visto que a martensita não foi modificada permanentemente. A Figura abaixo esquematiza o que foi explicado até então.

mecanismo memória de forma

O fato de a estrutura austenítica ser “memorizada”, ainda que a liga sofra deformações em temperaturas mais baixas, explica não somente o mecanismo do efeito de memória de forma como também o porquê do nome escolhido para o fenômeno. O video abaixo mostra alguns experimentos realizados com a liga Nitinol. Observa-se, ao final do vídeo, que para alterar a forma a que o material retoma ao ser aquecido, o mesmo deve ser conformado em temperaturas elevadas para apresentar fase austenítica, visto que essa é a fase responsável pela memorização.

Espero que tenham gostado. Até a próxima!