Vídeos do Manual do Mundo que têm tudo a ver com Engenharia de Materiais

A internet está cheia de vídeos educativos sobre engenharia de materiais. Aqui no blog já falamos sobre alguns vídeos disponíveis no Ted que envolvem essa ciência e engenharia tão linda.

Quem nunca parou, olhou para um objeto qualquer e pensou como que foi feito aquilo? Hoje selecionamos alguns vídeos do Youtube do canal Manual do Mundo que explicam como as coisas são feitas, ou seja, engenharia de materiais pura!

manual-do-mundo

Continue reading Vídeos do Manual do Mundo que têm tudo a ver com Engenharia de Materiais

Compartilhar Matéria:

Vitrocerâmica brasileira pode substituir as telas dos smartphones

Tenho certeza que pelo menos uns 30% das pessoas que possuem um smartphone já conseguiram a proeza de quebrar a tela. Mesmo o Gorilla Glass (falamos sobre ele aqui) não é páreo para nós. Então a pesquisa com materiais que podem substitui-lo e aumentar o desempenho (ou proteção) dos nossos aparelhos eletrônicos, é muito importante.

Na UFSCar, o doutorando Leonardo Sant’Ana Gallo pesquisou vitrocerâmicas do sistema MgO-Al2O3-SiO2. Assim, através das propriedades descobertas (alta dureza, transparência e baixas densidades) foi possível prever umas das suas possíveis aplicações: telas de aparelhos eletrônicos, como tablets e smartphones, e até mesmo ser utilizada em veículos blindados! Esse material promoveria uma diminuição do peso, seja nos eletrônicos, quanto na aplicação anti-balística.

timthumb.php

Fonte imagem

O processo de produção de uma vitrocerâmica consiste na transformação  de um estado não-cristalino (amorfo) do vidro para um estado parcialmente cristalizado através de um tratamento térmico, esse processo geralmente é conhecido como devitrificação. O detalhe é que junto com a composição química do vidro, é necessário um agente nucleante para induzir o processo de cristalização. No trabalho realizado por Gallo, o material foi submetido à um tratamento térmico nas temperaturas de 700°C e outro à 900°C. Edgar Dutra Zanotto, orientador de Gallo, detalhou numa entrevista à Agência FAPESP como ocorre esse processo: “Quando o material é aquecido, sua estrutura molecular começa a se reorganizar, formando pequenos cristais distribuídos pelo meio amorfo. No caso em estudo, são cristais compostos – de magnésio, alumínio e silício –, como a cordierita, a safirina e outros. Suas características são definidas por três variáveis: composição química do vidro, temperaturas de tratamento e tempo de exposição a essas temperaturas. É possível controlar rigorosamente todas as etapas do processo, determinando, inclusive, o percentual do material a ser cristalizado para a obtenção do produto final de interesse”.

Após o tratamento térmico, devido à cristalização, o material pode se tornar totalmente opaco, mas em alguns casos podem continuar totalmente transparentes, o que não é comum e nem fácil de obter. Então essa é mais uma característica bem importante para a aplicação em telas de smartphones e tablets.

São essas fases cristalinas que promovem uma melhoria nas suas propriedades, como por exemplo na resistência mecânica. Esse material pode até absorver totalmente a energia de um projétil, não deixando ele passar, mas claro que irá ocorrer o rompimento do mesmo.

Outra característica chamativa das vitrocerâmicas é a facilidade com que esse material pode ser produzido, pois podem ser utilizadas as técnicas convencionais de conformação de materiais vítreos. E algumas das suas aplicações comuns são em peças refratárias para se utilizar em fornos e como revestimentos em trabalhos de arquitetura.

Essa pesquisa realizada com esse sistema MgO-Al2O3-SiO2 é tão importante que foi premiada no International Symposium on Crystallization in Glasses and Liquids (11o Simpósio Internacional sobre Cristalização em Vidros e Líquidos), no Japão. Esse simpósio é considerado um dos mais importantes e tradicionais nessa área.

No Japão no Instituto Industrial da Universidade de Tóquio foi realizada uma pesquisa que produziu um vidro com aplicações muito similares à vitrocerâmica brasileira. Um vidro tão resistente e tão forte quanto o aço foi criado e poderá ser utilizado em vidros de carros, edifícios e também em smartphones. O segredo desse material é a quantidade de alumina presente na composição, porém quanto maior a concentração dessa substância, mais o vidro tende a se cristalizar e se transformar em uma vitrocerâmica. Para resolver esse problema, os cientistas utilizaram uma técnica de levitação para evitar qualquer tipo de contato do material fundido com a forma, assim evitando a cristalização. O resultado obtido foi um vidro totalmente transparente que possui 50% de sílica na sua composição.

Já pensou em quantas aplicações esses materiais podem ter?

Referências:

FAPESP

Vidro Inquebrável tão forte quanto o aço

CALLISTER, W.D. Ciência e Engenharia de materiais: Uma introdução. Rio de Janeiro: LTC, 7ª ed. 2008;

*Nota de agradecimento: Ao nosso amigo e leitor, Diego Barboza, que nos enviou a reportagem sobre o vidro japonês.

Compartilhar Matéria:

Qual é o segredo do Gorilla Glass?

Creio que a maioria dos celulares fabricados hoje utilizam como tela o Gorilla Glass, que é fabricado pela tradicional indústria americana Corning.  E o diferencial desse produto é a sua resistência ao impacto e ao risco.

Gorilla-Glass-4

Primeiro devemos entender como funciona o processo de fabricação usual: A resistência do material pode ser melhorada através da indução de tensões residuais compressivas na sua superfície, conseguimos isso através da têmpera. Conforme essa técnica o vidro é aquecido até uma temperatura maior do que a tg (temperatura de transição vítrea) e abaixo do ponto de amolecimento, assim ela é resfriada até a temperatura ambiente com um jato de ar ou até mesmo em óleo. As tensões que queremos aparecem devido à diferença na taxa de resfriamento entre a superfície e o interior do material, já que a superfície resfria rapidamente e se torna rígida. Mas o interior, que possui uma taxa menor, tenta se contrair mais do que a rigidez da superfície permite, assim surgem essas tensões compressivas!

Esses seriam os famosos vidros temperados, contudo o processo do Gorilla Glass é um pouco diferente:

Ao invés de resfriarmos o material com um jato de ar ou óleo, resfriamos numa solução de sais de potássio a 400 °C, fazendo com que os pequenos íons de sódio saiam do vidro e sejam substituídos pelos grandes íons de potássio, causando tensões residuais muito maiores do que nos temperados, por causa do pequeno espaço existente para o maior íon. E são essas tensões que proporcionam ao material uma alta resistência à compressão e à fratura.

No seguinte vídeo podemos ver a comparação do Gorilla com um vidro sódico-cálcico, que é utilizado em garrafas, por exemplo.

Um dos principais concorrentes da Corning é a tela de safira, que possui vantagens como uma dureza maior e uma maior resistência ao risco, porém a sua densidade é maior, o que faz com que o produto final tenha um peso maior, além de que é muito mais caro para se produzir.  A safira é constituída de óxido de alumínio e por não ser encontrada na natureza, o seu processo é artificial. E na sua produção são aplicados calor (temperatura de 2.200 ºC) e pressão, assim em um período de 17 dias ela se resfria lentamente e recebe tratamentos térmicos. Por mais que a tela de safira não obteve muito sucesso no ramo de smartphones, ela é largamente utilizada em janelas de avião, ferramentas de corte e equipamentos elétricos e óticos.

O lançamento da Corning é o Gorilla Glass 4 que em 80% dos testes de queda não apresentou danos na tela.

Leia mais em:

CALLISTER, William D. Ciência e engenharia de materiais: uma introdução. 7. ed. Rio de Janeiro: LTC, c2008.

Corning

Gorilla vs. Safira

Compartilhar Matéria:

Vidros eletrocrômicos

Materiais eletrocrômicos possuem a interessante propriedade de alterar sua cor a partir da incidência de uma diferença de potencial. Assim, ao modificar a tensão aplicada sobre eles, é possível controlar seu grau de transparência e, consequentemente, o grau de transmissão que determinadas radiações do espectro eletromagnético terão através desses materiais.  É nesse contexto que surgem os vidros eletrocrômicos, os quais, somente com o apertar de um botão, proporcionam um controle das intensidades de luz e radiações como ultravioleta e infravermelho transmitidas, garantindo inúmeros benefícios a seus usuários. Janelas feitas dessa classe de vidros, por exemplo, permitem um aumento no conforto visual, uma vez que a transmissão de luz pode ser diminuída nos períodos em que há luminosidade excessiva proveniente do ambiente externo ou intensificada de maneira a maximizar o aproveitamento da luminosidade externa quando ela não for mais incômoda. Outra vantagem é a economia de energia, visto que no verão a passagem elevada de ondas de infravermelho através dos vidros de janela causa um aumento da temperatura do ambiente interno. Se a intensidade dessas ondas for diminuída, diminui também a energia utilizada por ares-condicionados para manter amena a temperatura da sala. Por outro lado, no inverno é possível maximizar o aproveitamento da radiação solar para o aquecimento do ambiente. Outra aplicação bastante interessante desses materiais é em retrovisores veiculares, pois permitem proteger o motorista da incidência de luz alta e consequentemente melhorar segurança nas estradas.

vidro-eletrocromico

Janelas feitas com vidros eletrocrômicos.

Como funcionam os vidros eletrocrômicos? Na verdade, os vidros utilizados possuem composição química semelhante a vidros comuns e não apresentam propriedades eletrocrômicas. O segredo desses dispositivos está em recobrir os vidros por filmes finos e transparentes, normalmente compostos por metais de transição, como óxido de estanho dopado com óxido de índio (SnO2-InO2), trióxido de tungstênio (WO3) ou pentóxido de nióbio (Nb2O5). São esses compostos que, através de mudanças  em seu estado de oxidação, apresentarão alteração de coloração. Os vidros recobertos serão separados por um eletrólito e farão o papel de eletrodos, sendo ligados a uma bateria. Assim, ocorre a formação de uma célula eletroquímica, denominada “vidro eletrocrômico”, o qual apresenta  variação de sua coloração e transmissividade com a aplicação de uma  diferença de potencial.

Mais informações em:

Vidro eletrocrômico é alternativa para segurança e economia de energia;

Electrochromic glass;

Uma visão das tendências e perspectivas em eletrocromismo.

Compartilhar Matéria: